std::sqrt,std::sqrtf,std::sqrtl (3) - Linux Manuals

std::sqrt,std::sqrtf,std::sqrtl: std::sqrt,std::sqrtf,std::sqrtl


std::sqrt,std::sqrtf,std::sqrtl - std::sqrt,std::sqrtf,std::sqrtl


Defined in header <cmath>
float sqrt ( float arg );
float sqrtf( float arg ); (since C++11)
double sqrt ( double arg ); (1) (2)
long double sqrt ( long double arg );
long double sqrtl( long double arg ); (3) (since C++11)
double sqrt ( IntegralType arg ); (4) (since C++11)

1-3) Computes the square root of arg.
4) A set of overloads or a function template accepting an argument of any integral_type. Equivalent to 2) (the argument is cast to double).


arg - Value of a floating-point or Integral_type

Return value

If no errors occur, square root of arg (

arg), is returned.
If a domain error occurs, an implementation-defined value is returned (NaN where supported)
If a range error occurs due to underflow, the correct result (after rounding) is returned.

Error handling

Errors are reported as specified in math_errhandling
Domain error occurs if arg is less than zero.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),

* If the argument is less than -0, FE_INVALID is raised and NaN is returned.
* If the argument is +∞ or ±0, it is returned, unmodified.
* If the argument is NaN, NaN is returned


std::sqrt is required by the IEEE standard to be exact. The only other operations required to be exact are the arithmetic_operators and the function std::fma. After rounding to the return type (using default rounding mode), the result of std::sqrt is indistinguishable from the infinitely precise result. In other words, the error is less than 0.5 ulp. Other functions, including std::pow, are not so constrained.


// Run this code

  #include <iostream>
  #include <cmath>
  #include <cerrno>
  #include <cfenv>
  #include <cstring>


  int main()
      // normal use
      std::cout << "sqrt(100) = " << std::sqrt(100) << '\n'
                << "sqrt(2) = " << std::sqrt(2) << '\n'
                << "golden ratio = " << (1+std::sqrt(5))/2 << '\n';
      // special values
      std::cout << "sqrt(-0) = " << std::sqrt(-0.0) << '\n';
      // error handling
      errno = 0;
      std::cout << "sqrt(-1.0) = " << std::sqrt(-1) << '\n';
      if(errno == EDOM)
          std::cout << " errno = EDOM " << std::strerror(errno) << '\n';
          std::cout << " FE_INVALID raised\n";

Possible output:

  sqrt(100) = 10
  sqrt(2) = 1.41421
  golden ratio = 1.61803
  sqrt(-0) = -0
  sqrt(-1.0) = -nan
      errno = EDOM Numerical argument out of domain
      FE_INVALID raised

See also

powl raises a number to the given power (xy)


cbrt computes cubic root (
cbrtf 3
cbrtl √
(C++11) (function)

hypot computes square root of the sum of the squares of two given numbers (
hypotf √
hypotl x2
(C++11) )
(C++11) (function)
                    complex square root in the range of the right half-plane
sqrt(std::complex) (function template)
                    applies the function std::sqrt to each element of valarray
sqrt(std::valarray) (function template)