CUNMRQ (3)  Linux Manuals
NAME
cunmrq.f 
SYNOPSIS
Functions/Subroutines
subroutine cunmrq (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
CUNMRQ
Function/Subroutine Documentation
subroutine cunmrq (characterSIDE, characterTRANS, integerM, integerN, integerK, complex, dimension( lda, * )A, integerLDA, complex, dimension( * )TAU, complex, dimension( ldc, * )C, integerLDC, complex, dimension( * )WORK, integerLWORK, integerINFO)
CUNMRQ
Purpose:

CUNMRQ overwrites the general complex MbyN matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'C': Q**H * C C * Q**H where Q is a complex unitary matrix defined as the product of k elementary reflectors Q = H(1)**H H(2)**H . . . H(k)**H as returned by CGERQF. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'.
Parameters:

SIDE
SIDE is CHARACTER*1 = 'L': apply Q or Q**H from the Left; = 'R': apply Q or Q**H from the Right.
TRANSTRANS is CHARACTER*1 = 'N': No transpose, apply Q; = 'C': Transpose, apply Q**H.
MM is INTEGER The number of rows of the matrix C. M >= 0.
NN is INTEGER The number of columns of the matrix C. N >= 0.
KK is INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0.
AA is COMPLEX array, dimension (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The ith row must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by CGERQF in the last k rows of its array argument A.
LDALDA is INTEGER The leading dimension of the array A. LDA >= max(1,K).
TAUTAU is COMPLEX array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by CGERQF.
CC is COMPLEX array, dimension (LDC,N) On entry, the MbyN matrix C. On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
LDCLDC is INTEGER The leading dimension of the array C. LDC >= max(1,M).
WORKWORK is COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORKLWORK is INTEGER The dimension of the array WORK. If SIDE = 'L', LWORK >= max(1,N); if SIDE = 'R', LWORK >= max(1,M). For optimum performance LWORK >= N*NB if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R', where NB is the optimal blocksize. If LWORK = 1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFOINFO is INTEGER = 0: successful exit < 0: if INFO = i, the ith argument had an illegal value
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2011
Definition at line 170 of file cunmrq.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.