DLAGTS (3)  Linux Manuals
NAME
dlagts.f 
SYNOPSIS
Functions/Subroutines
subroutine dlagts (JOB, N, A, B, C, D, IN, Y, TOL, INFO)
DLAGTS solves the system of equations (TλI)x = y or (TλI)Tx = y,where T is a general tridiagonal matrix and λ a scalar, using the LU factorization computed by slagtf.
Function/Subroutine Documentation
subroutine dlagts (integerJOB, integerN, double precision, dimension( * )A, double precision, dimension( * )B, double precision, dimension( * )C, double precision, dimension( * )D, integer, dimension( * )IN, double precision, dimension( * )Y, double precisionTOL, integerINFO)
DLAGTS solves the system of equations (TλI)x = y or (TλI)Tx = y,where T is a general tridiagonal matrix and λ a scalar, using the LU factorization computed by slagtf.
Purpose:

DLAGTS may be used to solve one of the systems of equations (T  lambda*I)*x = y or (T  lambda*I)**T*x = y, where T is an n by n tridiagonal matrix, for x, following the factorization of (T  lambda*I) as (T  lambda*I) = P*L*U , by routine DLAGTF. The choice of equation to be solved is controlled by the argument JOB, and in each case there is an option to perturb zero or very small diagonal elements of U, this option being intended for use in applications such as inverse iteration.
Parameters:

JOB
JOB is INTEGER Specifies the job to be performed by DLAGTS as follows: = 1: The equations (T  lambda*I)x = y are to be solved, but diagonal elements of U are not to be perturbed. = 1: The equations (T  lambda*I)x = y are to be solved and, if overflow would otherwise occur, the diagonal elements of U are to be perturbed. See argument TOL below. = 2: The equations (T  lambda*I)**Tx = y are to be solved, but diagonal elements of U are not to be perturbed. = 2: The equations (T  lambda*I)**Tx = y are to be solved and, if overflow would otherwise occur, the diagonal elements of U are to be perturbed. See argument TOL below.
NN is INTEGER The order of the matrix T.
AA is DOUBLE PRECISION array, dimension (N) On entry, A must contain the diagonal elements of U as returned from DLAGTF.
BB is DOUBLE PRECISION array, dimension (N1) On entry, B must contain the first superdiagonal elements of U as returned from DLAGTF.
CC is DOUBLE PRECISION array, dimension (N1) On entry, C must contain the subdiagonal elements of L as returned from DLAGTF.
DD is DOUBLE PRECISION array, dimension (N2) On entry, D must contain the second superdiagonal elements of U as returned from DLAGTF.
ININ is INTEGER array, dimension (N) On entry, IN must contain details of the matrix P as returned from DLAGTF.
YY is DOUBLE PRECISION array, dimension (N) On entry, the right hand side vector y. On exit, Y is overwritten by the solution vector x.
TOLTOL is DOUBLE PRECISION On entry, with JOB .lt. 0, TOL should be the minimum perturbation to be made to very small diagonal elements of U. TOL should normally be chosen as about eps*norm(U), where eps is the relative machine precision, but if TOL is supplied as nonpositive, then it is reset to eps*max( abs( u(i,j) ) ). If JOB .gt. 0 then TOL is not referenced. On exit, TOL is changed as described above, only if TOL is nonpositive on entry. Otherwise TOL is unchanged.
INFOINFO is INTEGER = 0 : successful exit .lt. 0: if INFO = i, the ith argument had an illegal value .gt. 0: overflow would occur when computing the INFO(th) element of the solution vector x. This can only occur when JOB is supplied as positive and either means that a diagonal element of U is very small, or that the elements of the righthand side vector y are very large.
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 September 2012
Definition at line 162 of file dlagts.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.