cgegs (3)  Linux Manuals
NAME
cgegs.f 
SYNOPSIS
Functions/Subroutines
subroutine cgegs (JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK, LWORK, RWORK, INFO)
CGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices
Function/Subroutine Documentation
subroutine cgegs (characterJOBVSL, characterJOBVSR, integerN, complex, dimension( lda, * )A, integerLDA, complex, dimension( ldb, * )B, integerLDB, complex, dimension( * )ALPHA, complex, dimension( * )BETA, complex, dimension( ldvsl, * )VSL, integerLDVSL, complex, dimension( ldvsr, * )VSR, integerLDVSR, complex, dimension( * )WORK, integerLWORK, real, dimension( * )RWORK, integerINFO)
CGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices
Purpose:

This routine is deprecated and has been replaced by routine CGGES. CGEGS computes the eigenvalues, Schur form, and, optionally, the left and or/right Schur vectors of a complex matrix pair (A,B). Given two square matrices A and B, the generalized Schur factorization has the form A = Q*S*Z**H, B = Q*T*Z**H where Q and Z are unitary matrices and S and T are upper triangular. The columns of Q are the left Schur vectors and the columns of Z are the right Schur vectors. If only the eigenvalues of (A,B) are needed, the driver routine CGEGV should be used instead. See CGEGV for a description of the eigenvalues of the generalized nonsymmetric eigenvalue problem (GNEP).
Parameters:

JOBVSL
JOBVSL is CHARACTER*1 = 'N': do not compute the left Schur vectors; = 'V': compute the left Schur vectors (returned in VSL).
JOBVSRJOBVSR is CHARACTER*1 = 'N': do not compute the right Schur vectors; = 'V': compute the right Schur vectors (returned in VSR).
NN is INTEGER The order of the matrices A, B, VSL, and VSR. N >= 0.
AA is COMPLEX array, dimension (LDA, N) On entry, the matrix A. On exit, the upper triangular matrix S from the generalized Schur factorization.
LDALDA is INTEGER The leading dimension of A. LDA >= max(1,N).
BB is COMPLEX array, dimension (LDB, N) On entry, the matrix B. On exit, the upper triangular matrix T from the generalized Schur factorization.
LDBLDB is INTEGER The leading dimension of B. LDB >= max(1,N).
ALPHAALPHA is COMPLEX array, dimension (N) The complex scalars alpha that define the eigenvalues of GNEP. ALPHA(j) = S(j,j), the diagonal element of the Schur form of A.
BETABETA is COMPLEX array, dimension (N) The nonnegative real scalars beta that define the eigenvalues of GNEP. BETA(j) = T(j,j), the diagonal element of the triangular factor T. Together, the quantities alpha = ALPHA(j) and beta = BETA(j) represent the jth eigenvalue of the matrix pair (A,B), in one of the forms lambda = alpha/beta or mu = beta/alpha. Since either lambda or mu may overflow, they should not, in general, be computed.
VSLVSL is COMPLEX array, dimension (LDVSL,N) If JOBVSL = 'V', the matrix of left Schur vectors Q. Not referenced if JOBVSL = 'N'.
LDVSLLDVSL is INTEGER The leading dimension of the matrix VSL. LDVSL >= 1, and if JOBVSL = 'V', LDVSL >= N.
VSRVSR is COMPLEX array, dimension (LDVSR,N) If JOBVSR = 'V', the matrix of right Schur vectors Z. Not referenced if JOBVSR = 'N'.
LDVSRLDVSR is INTEGER The leading dimension of the matrix VSR. LDVSR >= 1, and if JOBVSR = 'V', LDVSR >= N.
WORKWORK is COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORKLWORK is INTEGER The dimension of the array WORK. LWORK >= max(1,2*N). For good performance, LWORK must generally be larger. To compute the optimal value of LWORK, call ILAENV to get blocksizes (for CGEQRF, CUNMQR, and CUNGQR.) Then compute: NB  MAX of the blocksizes for CGEQRF, CUNMQR, and CUNGQR; the optimal LWORK is N*(NB+1). If LWORK = 1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
RWORKRWORK is REAL array, dimension (3*N)
INFOINFO is INTEGER = 0: successful exit < 0: if INFO = i, the ith argument had an illegal value. =1,...,N: The QZ iteration failed. (A,B) are not in Schur form, but ALPHA(j) and BETA(j) should be correct for j=INFO+1,...,N. > N: errors that usually indicate LAPACK problems: =N+1: error return from CGGBAL =N+2: error return from CGEQRF =N+3: error return from CUNMQR =N+4: error return from CUNGQR =N+5: error return from CGGHRD =N+6: error return from CHGEQZ (other than failed iteration) =N+7: error return from CGGBAK (computing VSL) =N+8: error return from CGGBAK (computing VSR) =N+9: error return from CLASCL (various places)
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2011
Definition at line 224 of file cgegs.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.