cheevd.f (3)  Linux Manuals
NAME
cheevd.f 
SYNOPSIS
Functions/Subroutines
subroutine cheevd (JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)
CHEEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices
Function/Subroutine Documentation
subroutine cheevd (characterJOBZ, characterUPLO, integerN, complex, dimension( lda, * )A, integerLDA, real, dimension( * )W, complex, dimension( * )WORK, integerLWORK, real, dimension( * )RWORK, integerLRWORK, integer, dimension( * )IWORK, integerLIWORK, integerINFO)
CHEEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices
Purpose:

CHEEVD computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray XMP, Cray YMP, Cray C90, or Cray2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.
Parameters:

JOBZ
JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors.
UPLOUPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.
NN is INTEGER The order of the matrix A. N >= 0.
AA is COMPLEX array, dimension (LDA, N) On entry, the Hermitian matrix A. If UPLO = 'U', the leading NbyN upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = 'L', the leading NbyN lower triangular part of A contains the lower triangular part of the matrix A. On exit, if JOBZ = 'V', then if INFO = 0, A contains the orthonormal eigenvectors of the matrix A. If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') or the upper triangle (if UPLO='U') of A, including the diagonal, is destroyed.
LDALDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
WW is REAL array, dimension (N) If INFO = 0, the eigenvalues in ascending order.
WORKWORK is COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORKLWORK is INTEGER The length of the array WORK. If N <= 1, LWORK must be at least 1. If JOBZ = 'N' and N > 1, LWORK must be at least N + 1. If JOBZ = 'V' and N > 1, LWORK must be at least 2*N + N**2. If LWORK = 1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
RWORKRWORK is REAL array, dimension (LRWORK) On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
LRWORKLRWORK is INTEGER The dimension of the array RWORK. If N <= 1, LRWORK must be at least 1. If JOBZ = 'N' and N > 1, LRWORK must be at least N. If JOBZ = 'V' and N > 1, LRWORK must be at least 1 + 5*N + 2*N**2. If LRWORK = 1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
IWORKIWORK is INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORKLIWORK is INTEGER The dimension of the array IWORK. If N <= 1, LIWORK must be at least 1. If JOBZ = 'N' and N > 1, LIWORK must be at least 1. If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. If LIWORK = 1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
INFOINFO is INTEGER = 0: successful exit < 0: if INFO = i, the ith argument had an illegal value > 0: if INFO = i and JOBZ = 'N', then the algorithm failed to converge; i offdiagonal elements of an intermediate tridiagonal form did not converge to zero; if INFO = i and JOBZ = 'V', then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1).
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2011
Further Details:
 Modified description of INFO. Sven, 16 Feb 05.
Contributors:
 Jeff Rutter, Computer Science Division, University of California at Berkeley, USA
Definition at line 205 of file cheevd.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.