cla_hercond_x (3) - Linux Manuals

NAME

cla_hercond_x.f -

SYNOPSIS


Functions/Subroutines


REAL function cla_hercond_x (UPLO, N, A, LDA, AF, LDAF, IPIV, X, INFO, WORK, RWORK)
CLA_HERCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian indefinite matrices.

Function/Subroutine Documentation

REAL function cla_hercond_x (characterUPLO, integerN, complex, dimension( lda, * )A, integerLDA, complex, dimension( ldaf, * )AF, integerLDAF, integer, dimension( * )IPIV, complex, dimension( * )X, integerINFO, complex, dimension( * )WORK, real, dimension( * )RWORK)

CLA_HERCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian indefinite matrices.

Purpose:

    CLA_HERCOND_X computes the infinity norm condition number of
    op(A) * diag(X) where X is a COMPLEX vector.


 

Parameters:

UPLO

          UPLO is CHARACTER*1
       = 'U':  Upper triangle of A is stored;
       = 'L':  Lower triangle of A is stored.


N

          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.


A

          A is COMPLEX array, dimension (LDA,N)
     On entry, the N-by-N matrix A.


LDA

          LDA is INTEGER
     The leading dimension of the array A.  LDA >= max(1,N).


AF

          AF is COMPLEX array, dimension (LDAF,N)
     The block diagonal matrix D and the multipliers used to
     obtain the factor U or L as computed by CHETRF.


LDAF

          LDAF is INTEGER
     The leading dimension of the array AF.  LDAF >= max(1,N).


IPIV

          IPIV is INTEGER array, dimension (N)
     Details of the interchanges and the block structure of D
     as determined by CHETRF.


X

          X is COMPLEX array, dimension (N)
     The vector X in the formula op(A) * diag(X).


INFO

          INFO is INTEGER
       = 0:  Successful exit.
     i > 0:  The ith argument is invalid.


WORK

          WORK is COMPLEX array, dimension (2*N).
     Workspace.


RWORK

          RWORK is REAL array, dimension (N).
     Workspace.


 

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

September 2012

Definition at line 131 of file cla_hercond_x.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.