ctgexc (3)  Linux Man Pages
NAME
ctgexc.f 
SYNOPSIS
Functions/Subroutines
subroutine ctgexc (WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ, IFST, ILST, INFO)
CTGEXC
Function/Subroutine Documentation
subroutine ctgexc (logicalWANTQ, logicalWANTZ, integerN, complex, dimension( lda, * )A, integerLDA, complex, dimension( ldb, * )B, integerLDB, complex, dimension( ldq, * )Q, integerLDQ, complex, dimension( ldz, * )Z, integerLDZ, integerIFST, integerILST, integerINFO)
CTGEXC
Purpose:

CTGEXC reorders the generalized Schur decomposition of a complex matrix pair (A,B), using an unitary equivalence transformation (A, B) := Q * (A, B) * Z**H, so that the diagonal block of (A, B) with row index IFST is moved to row ILST. (A, B) must be in generalized Schur canonical form, that is, A and B are both upper triangular. Optionally, the matrices Q and Z of generalized Schur vectors are updated. Q(in) * A(in) * Z(in)**H = Q(out) * A(out) * Z(out)**H Q(in) * B(in) * Z(in)**H = Q(out) * B(out) * Z(out)**H
Parameters:

WANTQ
WANTQ is LOGICAL .TRUE. : update the left transformation matrix Q; .FALSE.: do not update Q.
WANTZWANTZ is LOGICAL .TRUE. : update the right transformation matrix Z; .FALSE.: do not update Z.
NN is INTEGER The order of the matrices A and B. N >= 0.
AA is COMPLEX array, dimension (LDA,N) On entry, the upper triangular matrix A in the pair (A, B). On exit, the updated matrix A.
LDALDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
BB is COMPLEX array, dimension (LDB,N) On entry, the upper triangular matrix B in the pair (A, B). On exit, the updated matrix B.
LDBLDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
QQ is COMPLEX array, dimension (LDZ,N) On entry, if WANTQ = .TRUE., the unitary matrix Q. On exit, the updated matrix Q. If WANTQ = .FALSE., Q is not referenced.
LDQLDQ is INTEGER The leading dimension of the array Q. LDQ >= 1; If WANTQ = .TRUE., LDQ >= N.
ZZ is COMPLEX array, dimension (LDZ,N) On entry, if WANTZ = .TRUE., the unitary matrix Z. On exit, the updated matrix Z. If WANTZ = .FALSE., Z is not referenced.
LDZLDZ is INTEGER The leading dimension of the array Z. LDZ >= 1; If WANTZ = .TRUE., LDZ >= N.
IFSTIFST is INTEGER
ILSTILST is INTEGER Specify the reordering of the diagonal blocks of (A, B). The block with row index IFST is moved to row ILST, by a sequence of swapping between adjacent blocks.
INFOINFO is INTEGER =0: Successful exit. <0: if INFO = i, the ith argument had an illegal value. =1: The transformed matrix pair (A, B) would be too far from generalized Schur form; the problem is ill conditioned. (A, B) may have been partially reordered, and ILST points to the first row of the current position of the block being moved.
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2011
Contributors:
 Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S901 87 Umea, Sweden.
References:

[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the Generalized Real Schur Form of a Regular Matrix Pair (A, B), in M.S. Moonen et al (eds), Linear Algebra for Large Scale and RealTime Applications, Kluwer Academic Publ. 1993, pp 195218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified Eigenvalues of a Regular Matrix Pair (A, B) and Condition Estimation: Theory, Algorithms and Software, Report UMINF  94.04, Department of Computing Science, Umea University, S901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87. To appear in Numerical Algorithms, 1996.
[3] B. Kagstrom and P. Poromaa, LAPACKStyle Algorithms and Software for Solving the Generalized Sylvester Equation and Estimating the Separation between Regular Matrix Pairs, Report UMINF  93.23, Department of Computing Science, Umea University, S901 87 Umea, Sweden, December 1993, Revised April 1994, Also as LAPACK working Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996.
Definition at line 200 of file ctgexc.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.