# dgelq2 (3) - Linux Manuals

dgelq2.f -

## SYNOPSIS

### Functions/Subroutines

subroutine dgelq2 (M, N, A, LDA, TAU, WORK, INFO)
DGELQ2 computes the LQ factorization of a general rectangular matrix using an unblocked algorithm.

## Function/Subroutine Documentation

### subroutine dgelq2 (integerM, integerN, double precision, dimension( lda, * )A, integerLDA, double precision, dimension( * )TAU, double precision, dimension( * )WORK, integerINFO)

DGELQ2 computes the LQ factorization of a general rectangular matrix using an unblocked algorithm.

Purpose:

``` DGELQ2 computes an LQ factorization of a real m by n matrix A:
A = L * Q.
```

Parameters:

M

```          M is INTEGER
The number of rows of the matrix A.  M >= 0.
```

N

```          N is INTEGER
The number of columns of the matrix A.  N >= 0.
```

A

```          A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, the elements on and below the diagonal of the array
contain the m by min(m,n) lower trapezoidal matrix L (L is
lower triangular if m <= n); the elements above the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors (see Further Details).
```

LDA

```          LDA is INTEGER
The leading dimension of the array A.  LDA >= max(1,M).
```

TAU

```          TAU is DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
```

WORK

```          WORK is DOUBLE PRECISION array, dimension (M)
```

INFO

```          INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
```

Author:

Univ. of Tennessee

Univ. of California Berkeley

NAG Ltd.

Date:

September 2012

Further Details:

```  The matrix Q is represented as a product of elementary reflectors

Q = H(k) . . . H(2) H(1), where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v**T

where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n),
and tau in TAU(i).
```

Definition at line 122 of file dgelq2.f.

## Author

Generated automatically by Doxygen for LAPACK from the source code.