dlaqp2 (3)  Linux Manuals
NAME
dlaqp2.f 
SYNOPSIS
Functions/Subroutines
subroutine dlaqp2 (M, N, OFFSET, A, LDA, JPVT, TAU, VN1, VN2, WORK)
DLAQP2 computes a QR factorization with column pivoting of the matrix block.
Function/Subroutine Documentation
subroutine dlaqp2 (integerM, integerN, integerOFFSET, double precision, dimension( lda, * )A, integerLDA, integer, dimension( * )JPVT, double precision, dimension( * )TAU, double precision, dimension( * )VN1, double precision, dimension( * )VN2, double precision, dimension( * )WORK)
DLAQP2 computes a QR factorization with column pivoting of the matrix block.
Purpose:

DLAQP2 computes a QR factorization with column pivoting of the block A(OFFSET+1:M,1:N). The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
Parameters:

M
M is INTEGER The number of rows of the matrix A. M >= 0.
NN is INTEGER The number of columns of the matrix A. N >= 0.
OFFSETOFFSET is INTEGER The number of rows of the matrix A that must be pivoted but no factorized. OFFSET >= 0.
AA is DOUBLE PRECISION array, dimension (LDA,N) On entry, the MbyN matrix A. On exit, the upper triangle of block A(OFFSET+1:M,1:N) is the triangular factor obtained; the elements in block A(OFFSET+1:M,1:N) below the diagonal, together with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors. Block A(1:OFFSET,1:N) has been accordingly pivoted, but no factorized.
LDALDA is INTEGER The leading dimension of the array A. LDA >= max(1,M).
JPVTJPVT is INTEGER array, dimension (N) On entry, if JPVT(i) .ne. 0, the ith column of A is permuted to the front of A*P (a leading column); if JPVT(i) = 0, the ith column of A is a free column. On exit, if JPVT(i) = k, then the ith column of A*P was the kth column of A.
TAUTAU is DOUBLE PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors.
VN1VN1 is DOUBLE PRECISION array, dimension (N) The vector with the partial column norms.
VN2VN2 is DOUBLE PRECISION array, dimension (N) The vector with the exact column norms.
WORKWORK is DOUBLE PRECISION array, dimension (N)
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2013
Contributors:

G. QuintanaOrti, Depto. de Informatica, Universidad Jaime I, Spain X. Sun, Computer Science Dept., Duke University, USA
Partial column norm updating strategy modified on April 2011 Z. Drmac and Z. Bujanovic, Dept. of Mathematics, University of Zagreb, Croatia.
References:
 LAPACK Working Note 176
Definition at line 149 of file dlaqp2.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.