dsygv (3)  Linux Man Pages
NAME
dsygv.f 
SYNOPSIS
Functions/Subroutines
subroutine dsygv (ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, LWORK, INFO)
DSYGST
Function/Subroutine Documentation
subroutine dsygv (integerITYPE, characterJOBZ, characterUPLO, integerN, double precision, dimension( lda, * )A, integerLDA, double precision, dimension( ldb, * )B, integerLDB, double precision, dimension( * )W, double precision, dimension( * )WORK, integerLWORK, integerINFO)
DSYGST
Purpose:

DSYGV computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetricdefinite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be symmetric and B is also positive definite.
Parameters:

ITYPE
ITYPE is INTEGER Specifies the problem type to be solved: = 1: A*x = (lambda)*B*x = 2: A*B*x = (lambda)*x = 3: B*A*x = (lambda)*x
JOBZJOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors.
UPLOUPLO is CHARACTER*1 = 'U': Upper triangles of A and B are stored; = 'L': Lower triangles of A and B are stored.
NN is INTEGER The order of the matrices A and B. N >= 0.
AA is DOUBLE PRECISION array, dimension (LDA, N) On entry, the symmetric matrix A. If UPLO = 'U', the leading NbyN upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = 'L', the leading NbyN lower triangular part of A contains the lower triangular part of the matrix A. On exit, if JOBZ = 'V', then if INFO = 0, A contains the matrix Z of eigenvectors. The eigenvectors are normalized as follows: if ITYPE = 1 or 2, Z**T*B*Z = I; if ITYPE = 3, Z**T*inv(B)*Z = I. If JOBZ = 'N', then on exit the upper triangle (if UPLO='U') or the lower triangle (if UPLO='L') of A, including the diagonal, is destroyed.
LDALDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
BB is DOUBLE PRECISION array, dimension (LDB, N) On entry, the symmetric positive definite matrix B. If UPLO = 'U', the leading NbyN upper triangular part of B contains the upper triangular part of the matrix B. If UPLO = 'L', the leading NbyN lower triangular part of B contains the lower triangular part of the matrix B. On exit, if INFO <= N, the part of B containing the matrix is overwritten by the triangular factor U or L from the Cholesky factorization B = U**T*U or B = L*L**T.
LDBLDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
WW is DOUBLE PRECISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order.
WORKWORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORKLWORK is INTEGER The length of the array WORK. LWORK >= max(1,3*N1). For optimal efficiency, LWORK >= (NB+2)*N, where NB is the blocksize for DSYTRD returned by ILAENV. If LWORK = 1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFOINFO is INTEGER = 0: successful exit < 0: if INFO = i, the ith argument had an illegal value > 0: DPOTRF or DSYEV returned an error code: <= N: if INFO = i, DSYEV failed to converge; i offdiagonal elements of an intermediate tridiagonal form did not converge to zero; > N: if INFO = N + i, for 1 <= i <= N, then the leading minor of order i of B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed.
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2011
Definition at line 175 of file dsygv.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.