dtgexc.f (3)  Linux Manuals
NAME
dtgexc.f 
SYNOPSIS
Functions/Subroutines
subroutine dtgexc (WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ, IFST, ILST, WORK, LWORK, INFO)
DTGEXC
Function/Subroutine Documentation
subroutine dtgexc (logicalWANTQ, logicalWANTZ, integerN, double precision, dimension( lda, * )A, integerLDA, double precision, dimension( ldb, * )B, integerLDB, double precision, dimension( ldq, * )Q, integerLDQ, double precision, dimension( ldz, * )Z, integerLDZ, integerIFST, integerILST, double precision, dimension( * )WORK, integerLWORK, integerINFO)
DTGEXC
Purpose:

DTGEXC reorders the generalized real Schur decomposition of a real matrix pair (A,B) using an orthogonal equivalence transformation (A, B) = Q * (A, B) * Z**T, so that the diagonal block of (A, B) with row index IFST is moved to row ILST. (A, B) must be in generalized real Schur canonical form (as returned by DGGES), i.e. A is block upper triangular with 1by1 and 2by2 diagonal blocks. B is upper triangular. Optionally, the matrices Q and Z of generalized Schur vectors are updated. Q(in) * A(in) * Z(in)**T = Q(out) * A(out) * Z(out)**T Q(in) * B(in) * Z(in)**T = Q(out) * B(out) * Z(out)**T
Parameters:

WANTQ
WANTQ is LOGICAL .TRUE. : update the left transformation matrix Q; .FALSE.: do not update Q.
WANTZWANTZ is LOGICAL .TRUE. : update the right transformation matrix Z; .FALSE.: do not update Z.
NN is INTEGER The order of the matrices A and B. N >= 0.
AA is DOUBLE PRECISION array, dimension (LDA,N) On entry, the matrix A in generalized real Schur canonical form. On exit, the updated matrix A, again in generalized real Schur canonical form.
LDALDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
BB is DOUBLE PRECISION array, dimension (LDB,N) On entry, the matrix B in generalized real Schur canonical form (A,B). On exit, the updated matrix B, again in generalized real Schur canonical form (A,B).
LDBLDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
QQ is DOUBLE PRECISION array, dimension (LDQ,N) On entry, if WANTQ = .TRUE., the orthogonal matrix Q. On exit, the updated matrix Q. If WANTQ = .FALSE., Q is not referenced.
LDQLDQ is INTEGER The leading dimension of the array Q. LDQ >= 1. If WANTQ = .TRUE., LDQ >= N.
ZZ is DOUBLE PRECISION array, dimension (LDZ,N) On entry, if WANTZ = .TRUE., the orthogonal matrix Z. On exit, the updated matrix Z. If WANTZ = .FALSE., Z is not referenced.
LDZLDZ is INTEGER The leading dimension of the array Z. LDZ >= 1. If WANTZ = .TRUE., LDZ >= N.
IFSTIFST is INTEGER
ILSTILST is INTEGER Specify the reordering of the diagonal blocks of (A, B). The block with row index IFST is moved to row ILST, by a sequence of swapping between adjacent blocks. On exit, if IFST pointed on entry to the second row of a 2by2 block, it is changed to point to the first row; ILST always points to the first row of the block in its final position (which may differ from its input value by +1 or 1). 1 <= IFST, ILST <= N.
WORKWORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORKLWORK is INTEGER The dimension of the array WORK. LWORK >= 1 when N <= 1, otherwise LWORK >= 4*N + 16. If LWORK = 1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFOINFO is INTEGER =0: successful exit. <0: if INFO = i, the ith argument had an illegal value. =1: The transformed matrix pair (A, B) would be too far from generalized Schur form; the problem is ill conditioned. (A, B) may have been partially reordered, and ILST points to the first row of the current position of the block being moved.
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2011
Contributors:
 Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S901 87 Umea, Sweden.
References:

[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the Generalized Real Schur Form of a Regular Matrix Pair (A, B), in M.S. Moonen et al (eds), Linear Algebra for Large Scale and RealTime Applications, Kluwer Academic Publ. 1993, pp 195218.
Definition at line 220 of file dtgexc.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.