sgttrf (3) - Linux Man Pages

sgttrf.f -

SYNOPSIS

Functions/Subroutines

subroutine sgttrf (N, DL, D, DU, DU2, IPIV, INFO)
SGTTRF

Function/Subroutine Documentation

subroutine sgttrf (integerN, real, dimension( * )DL, real, dimension( * )D, real, dimension( * )DU, real, dimension( * )DU2, integer, dimension( * )IPIV, integerINFO)

SGTTRF

Purpose:

SGTTRF computes an LU factorization of a real tridiagonal matrix A
using elimination with partial pivoting and row interchanges.

The factorization has the form
A = L * U
where L is a product of permutation and unit lower bidiagonal
matrices and U is upper triangular with nonzeros in only the main
diagonal and first two superdiagonals.

Parameters:

N

N is INTEGER
The order of the matrix A.

DL

DL is REAL array, dimension (N-1)
On entry, DL must contain the (n-1) sub-diagonal elements of
A.

On exit, DL is overwritten by the (n-1) multipliers that
define the matrix L from the LU factorization of A.

D

D is REAL array, dimension (N)
On entry, D must contain the diagonal elements of A.

On exit, D is overwritten by the n diagonal elements of the
upper triangular matrix U from the LU factorization of A.

DU

DU is REAL array, dimension (N-1)
On entry, DU must contain the (n-1) super-diagonal elements
of A.

On exit, DU is overwritten by the (n-1) elements of the first
super-diagonal of U.

DU2

DU2 is REAL array, dimension (N-2)
On exit, DU2 is overwritten by the (n-2) elements of the
second super-diagonal of U.

IPIV

IPIV is INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i).  IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.

INFO

INFO is INTEGER
= 0:  successful exit
< 0:  if INFO = -k, the k-th argument had an illegal value
> 0:  if INFO = k, U(k,k) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equations.

Author:

Univ. of Tennessee

Univ. of California Berkeley