# std::assoc_legendre,std::assoc_legendref,std::assoc_legendrel (3) - Linux Man Pages

## NAME

std::assoc_legendre,std::assoc_legendref,std::assoc_legendrel - std::assoc_legendre,std::assoc_legendref,std::assoc_legendrel

## Synopsis

double assoc_legendre( unsigned int n, unsigned int m, double x );
float assoc_legendre( unsigned int n, unsigned int m, float x );
long double assoc_legendre( unsigned int n, unsigned int m, long double x ); (1) (since C++17)
float assoc_legendref( unsigned int n, unsigned int m, float x );
long double assoc_legendrel( unsigned int n, unsigned int m, long double x );
double assoc_legendre( unsigned int n, unsigned int m, IntegralType x ); (2) (since C++17)

1) Computes the associated_Legendre_polynomials of the degree n, order m, and argument x
2) A set of overloads or a function template accepting an argument of any integral_type. Equivalent to (1) after casting the argument to double.

## Parameters

n - the degree of the polynomial, a value of unsigned integer type
m - the order of the polynomial, a value of unsigned integer type
x - the argument, a value of a floating-point or integral type

## Return value

If no errors occur, value of the associated Legendre polynomial $$\mathsf{P}_n^m$$Pm
n of x, that is $$(1 - x^2) ^ {m/2} \: \frac{ \mathsf{d} ^ m}{ \mathsf{d}x ^ m} \, \mathsf{P}_n(x)$$(1-x2
)m/2

dm
dxm

P
n(x), is returned (where $$\mathsf{P}_n(x)$$P
n(x) is the unassociated Legendre polynomial, std::legendre(n, x)).
Note that the Condon-Shortley_phase_term $$(-1)^m$$(-1)m
is omitted from this definition.

## Error handling

Errors may be reported as specified in math_errhandling

* If the argument is NaN, NaN is returned and domain error is not reported
* If |x| > 1, a domain error may occur
* If n is greater or equal to 128, the behavior is implementation-defined.

## Notes

Implementations that do not support C++17, but support ISO_29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath and namespace std::tr1
An implementation of this function is also available_in_boost.math as boost::math::legendre_p, except that the boost.math definition includes the Condon-Shortley phase term.
The first few associated Legendre polynomials are:

* assoc_legendre(0, 0, x) = 1
* assoc_legendre(1, 0, x) = x
* assoc_legendre(1, 1, x) = (1-x2
)1/2
* assoc_legendre(2, 0, x) =

1
2

(3x2
-1)
* assoc_legendre(2, 1, x) = 3x(1-x2
)1/2
* assoc_legendre(2, 2, x) = 3(1-x2
)

## Example

// Run this code

#include <cmath>
#include <iostream>
double P20(double x) { return 0.5*(3*x*x-1); }
double P21(double x) { return 3.0*x*std::sqrt(1-x*x); }
double P22(double x) { return 3*(1-x*x); }
int main()
{
// spot-checks
std::cout << std::assoc_legendre(2, 0, 0.5) << '=' << P20(0.5) << '\n'
<< std::assoc_legendre(2, 1, 0.5) << '=' << P21(0.5) << '\n'
<< std::assoc_legendre(2, 2, 0.5) << '=' << P22(0.5) << '\n';
}

## Output:

-0.125=-0.125
1.29904=1.29904
2.25=2.25

Weisstein,_Eric_W._"Associated_Legendre_Polynomial." From MathWorld--A Wolfram Web Resource.