zgeev.f (3)  Linux Man Pages
NAME
zgeev.f 
SYNOPSIS
Functions/Subroutines
subroutine zgeev (JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO)
ZGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices
Function/Subroutine Documentation
subroutine zgeev (characterJOBVL, characterJOBVR, integerN, complex*16, dimension( lda, * )A, integerLDA, complex*16, dimension( * )W, complex*16, dimension( ldvl, * )VL, integerLDVL, complex*16, dimension( ldvr, * )VR, integerLDVR, complex*16, dimension( * )WORK, integerLWORK, double precision, dimension( * )RWORK, integerINFO)
ZGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices
Purpose:

ZGEEV computes for an NbyN complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors. The right eigenvector v(j) of A satisfies A * v(j) = lambda(j) * v(j) where lambda(j) is its eigenvalue. The left eigenvector u(j) of A satisfies u(j)**H * A = lambda(j) * u(j)**H where u(j)**H denotes the conjugate transpose of u(j). The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.
Parameters:

JOBVL
JOBVL is CHARACTER*1 = 'N': left eigenvectors of A are not computed; = 'V': left eigenvectors of are computed.
JOBVRJOBVR is CHARACTER*1 = 'N': right eigenvectors of A are not computed; = 'V': right eigenvectors of A are computed.
NN is INTEGER The order of the matrix A. N >= 0.
AA is COMPLEX*16 array, dimension (LDA,N) On entry, the NbyN matrix A. On exit, A has been overwritten.
LDALDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
WW is COMPLEX*16 array, dimension (N) W contains the computed eigenvalues.
VLVL is COMPLEX*16 array, dimension (LDVL,N) If JOBVL = 'V', the left eigenvectors u(j) are stored one after another in the columns of VL, in the same order as their eigenvalues. If JOBVL = 'N', VL is not referenced. u(j) = VL(:,j), the jth column of VL.
LDVLLDVL is INTEGER The leading dimension of the array VL. LDVL >= 1; if JOBVL = 'V', LDVL >= N.
VRVR is COMPLEX*16 array, dimension (LDVR,N) If JOBVR = 'V', the right eigenvectors v(j) are stored one after another in the columns of VR, in the same order as their eigenvalues. If JOBVR = 'N', VR is not referenced. v(j) = VR(:,j), the jth column of VR.
LDVRLDVR is INTEGER The leading dimension of the array VR. LDVR >= 1; if JOBVR = 'V', LDVR >= N.
WORKWORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORKLWORK is INTEGER The dimension of the array WORK. LWORK >= max(1,2*N). For good performance, LWORK must generally be larger. If LWORK = 1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
RWORKRWORK is DOUBLE PRECISION array, dimension (2*N)
INFOINFO is INTEGER = 0: successful exit < 0: if INFO = i, the ith argument had an illegal value. > 0: if INFO = i, the QR algorithm failed to compute all the eigenvalues, and no eigenvectors have been computed; elements and i+1:N of W contain eigenvalues which have converged.
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2011
Definition at line 177 of file zgeev.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.