zgges.f (3) - Linux Manuals

NAME

zgges.f -

SYNOPSIS


Functions/Subroutines


subroutine zgges (JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB, SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK, LWORK, RWORK, BWORK, INFO)
ZGGES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices

Function/Subroutine Documentation

subroutine zgges (characterJOBVSL, characterJOBVSR, characterSORT, logical, externalSELCTG, integerN, complex*16, dimension( lda, * )A, integerLDA, complex*16, dimension( ldb, * )B, integerLDB, integerSDIM, complex*16, dimension( * )ALPHA, complex*16, dimension( * )BETA, complex*16, dimension( ldvsl, * )VSL, integerLDVSL, complex*16, dimension( ldvsr, * )VSR, integerLDVSR, complex*16, dimension( * )WORK, integerLWORK, double precision, dimension( * )RWORK, logical, dimension( * )BWORK, integerINFO)

ZGGES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices

Purpose:

 ZGGES computes for a pair of N-by-N complex nonsymmetric matrices
 (A,B), the generalized eigenvalues, the generalized complex Schur
 form (S, T), and optionally left and/or right Schur vectors (VSL
 and VSR). This gives the generalized Schur factorization

         (A,B) = ( (VSL)*S*(VSR)**H, (VSL)*T*(VSR)**H )

 where (VSR)**H is the conjugate-transpose of VSR.

 Optionally, it also orders the eigenvalues so that a selected cluster
 of eigenvalues appears in the leading diagonal blocks of the upper
 triangular matrix S and the upper triangular matrix T. The leading
 columns of VSL and VSR then form an unitary basis for the
 corresponding left and right eigenspaces (deflating subspaces).

 (If only the generalized eigenvalues are needed, use the driver
 ZGGEV instead, which is faster.)

 A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
 or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
 usually represented as the pair (alpha,beta), as there is a
 reasonable interpretation for beta=0, and even for both being zero.

 A pair of matrices (S,T) is in generalized complex Schur form if S
 and T are upper triangular and, in addition, the diagonal elements
 of T are non-negative real numbers.


 

Parameters:

JOBVSL

          JOBVSL is CHARACTER*1
          = 'N':  do not compute the left Schur vectors;
          = 'V':  compute the left Schur vectors.


JOBVSR

          JOBVSR is CHARACTER*1
          = 'N':  do not compute the right Schur vectors;
          = 'V':  compute the right Schur vectors.


SORT

          SORT is CHARACTER*1
          Specifies whether or not to order the eigenvalues on the
          diagonal of the generalized Schur form.
          = 'N':  Eigenvalues are not ordered;
          = 'S':  Eigenvalues are ordered (see SELCTG).


SELCTG

          SELCTG is a LOGICAL FUNCTION of two COMPLEX*16 arguments
          SELCTG must be declared EXTERNAL in the calling subroutine.
          If SORT = 'N', SELCTG is not referenced.
          If SORT = 'S', SELCTG is used to select eigenvalues to sort
          to the top left of the Schur form.
          An eigenvalue ALPHA(j)/BETA(j) is selected if
          SELCTG(ALPHA(j),BETA(j)) is true.

          Note that a selected complex eigenvalue may no longer satisfy
          SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since
          ordering may change the value of complex eigenvalues
          (especially if the eigenvalue is ill-conditioned), in this
          case INFO is set to N+2 (See INFO below).


N

          N is INTEGER
          The order of the matrices A, B, VSL, and VSR.  N >= 0.


A

          A is COMPLEX*16 array, dimension (LDA, N)
          On entry, the first of the pair of matrices.
          On exit, A has been overwritten by its generalized Schur
          form S.


LDA

          LDA is INTEGER
          The leading dimension of A.  LDA >= max(1,N).


B

          B is COMPLEX*16 array, dimension (LDB, N)
          On entry, the second of the pair of matrices.
          On exit, B has been overwritten by its generalized Schur
          form T.


LDB

          LDB is INTEGER
          The leading dimension of B.  LDB >= max(1,N).


SDIM

          SDIM is INTEGER
          If SORT = 'N', SDIM = 0.
          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
          for which SELCTG is true.


ALPHA

          ALPHA is COMPLEX*16 array, dimension (N)


BETA

          BETA is COMPLEX*16 array, dimension (N)
          On exit,  ALPHA(j)/BETA(j), j=1,...,N, will be the
          generalized eigenvalues.  ALPHA(j), j=1,...,N  and  BETA(j),
          j=1,...,N  are the diagonals of the complex Schur form (A,B)
          output by ZGGES. The  BETA(j) will be non-negative real.

          Note: the quotients ALPHA(j)/BETA(j) may easily over- or
          underflow, and BETA(j) may even be zero.  Thus, the user
          should avoid naively computing the ratio alpha/beta.
          However, ALPHA will be always less than and usually
          comparable with norm(A) in magnitude, and BETA always less
          than and usually comparable with norm(B).


VSL

          VSL is COMPLEX*16 array, dimension (LDVSL,N)
          If JOBVSL = 'V', VSL will contain the left Schur vectors.
          Not referenced if JOBVSL = 'N'.


LDVSL

          LDVSL is INTEGER
          The leading dimension of the matrix VSL. LDVSL >= 1, and
          if JOBVSL = 'V', LDVSL >= N.


VSR

          VSR is COMPLEX*16 array, dimension (LDVSR,N)
          If JOBVSR = 'V', VSR will contain the right Schur vectors.
          Not referenced if JOBVSR = 'N'.


LDVSR

          LDVSR is INTEGER
          The leading dimension of the matrix VSR. LDVSR >= 1, and
          if JOBVSR = 'V', LDVSR >= N.


WORK

          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.


LWORK

          LWORK is INTEGER
          The dimension of the array WORK.  LWORK >= max(1,2*N).
          For good performance, LWORK must generally be larger.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.


RWORK

          RWORK is DOUBLE PRECISION array, dimension (8*N)


BWORK

          BWORK is LOGICAL array, dimension (N)
          Not referenced if SORT = 'N'.


INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          =1,...,N:
                The QZ iteration failed.  (A,B) are not in Schur
                form, but ALPHA(j) and BETA(j) should be correct for
                j=INFO+1,...,N.
          > N:  =N+1: other than QZ iteration failed in ZHGEQZ
                =N+2: after reordering, roundoff changed values of
                      some complex eigenvalues so that leading
                      eigenvalues in the Generalized Schur form no
                      longer satisfy SELCTG=.TRUE.  This could also
                      be caused due to scaling.
                =N+3: reordering falied in ZTGSEN.


 

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

November 2011

Definition at line 269 of file zgges.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.