zgtrfs (3) - Linux Manuals
NAME
zgtrfs.f -
SYNOPSIS
Functions/Subroutines
subroutine zgtrfs (TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)
ZGTRFS
Function/Subroutine Documentation
subroutine zgtrfs (characterTRANS, integerN, integerNRHS, complex*16, dimension( * )DL, complex*16, dimension( * )D, complex*16, dimension( * )DU, complex*16, dimension( * )DLF, complex*16, dimension( * )DF, complex*16, dimension( * )DUF, complex*16, dimension( * )DU2, integer, dimension( * )IPIV, complex*16, dimension( ldb, * )B, integerLDB, complex*16, dimension( ldx, * )X, integerLDX, double precision, dimension( * )FERR, double precision, dimension( * )BERR, complex*16, dimension( * )WORK, double precision, dimension( * )RWORK, integerINFO)
ZGTRFS
Purpose:
-
ZGTRFS improves the computed solution to a system of linear equations when the coefficient matrix is tridiagonal, and provides error bounds and backward error estimates for the solution.
Parameters:
-
TRANS
TRANS is CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose)
NN is INTEGER The order of the matrix A. N >= 0.
NRHSNRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
DLDL is COMPLEX*16 array, dimension (N-1) The (n-1) subdiagonal elements of A.
DD is COMPLEX*16 array, dimension (N) The diagonal elements of A.
DUDU is COMPLEX*16 array, dimension (N-1) The (n-1) superdiagonal elements of A.
DLFDLF is COMPLEX*16 array, dimension (N-1) The (n-1) multipliers that define the matrix L from the LU factorization of A as computed by ZGTTRF.
DFDF is COMPLEX*16 array, dimension (N) The n diagonal elements of the upper triangular matrix U from the LU factorization of A.
DUFDUF is COMPLEX*16 array, dimension (N-1) The (n-1) elements of the first superdiagonal of U.
DU2DU2 is COMPLEX*16 array, dimension (N-2) The (n-2) elements of the second superdiagonal of U.
IPIVIPIV is INTEGER array, dimension (N) The pivot indices; for 1 <= i <= n, row i of the matrix was interchanged with row IPIV(i). IPIV(i) will always be either i or i+1; IPIV(i) = i indicates a row interchange was not required.
BB is COMPLEX*16 array, dimension (LDB,NRHS) The right hand side matrix B.
LDBLDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
XX is COMPLEX*16 array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by ZGTTRS. On exit, the improved solution matrix X.
LDXLDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).
FERRFERR is DOUBLE PRECISION array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error.
BERRBERR is DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution).
WORKWORK is COMPLEX*16 array, dimension (2*N)
RWORKRWORK is DOUBLE PRECISION array, dimension (N)
INFOINFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters:
-
ITMAX is the maximum number of steps of iterative refinement.
Author:
-
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
- September 2012
Definition at line 209 of file zgtrfs.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.