zhpgst (3)  Linux Manuals
NAME
zhpgst.f 
SYNOPSIS
Functions/Subroutines
subroutine zhpgst (ITYPE, UPLO, N, AP, BP, INFO)
ZHPGST
Function/Subroutine Documentation
subroutine zhpgst (integerITYPE, characterUPLO, integerN, complex*16, dimension( * )AP, complex*16, dimension( * )BP, integerINFO)
ZHPGST
Purpose:

ZHPGST reduces a complex Hermitiandefinite generalized eigenproblem to standard form, using packed storage. If ITYPE = 1, the problem is A*x = lambda*B*x, and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H) If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H*A*L. B must have been previously factorized as U**H*U or L*L**H by ZPPTRF.
Parameters:

ITYPE
ITYPE is INTEGER = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H); = 2 or 3: compute U*A*U**H or L**H*A*L.
UPLOUPLO is CHARACTER*1 = 'U': Upper triangle of A is stored and B is factored as U**H*U; = 'L': Lower triangle of A is stored and B is factored as L*L**H.
NN is INTEGER The order of the matrices A and B. N >= 0.
APAP is COMPLEX*16 array, dimension (N*(N+1)/2) On entry, the upper or lower triangle of the Hermitian matrix A, packed columnwise in a linear array. The jth column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j1)*(2nj)/2) = A(i,j) for j<=i<=n. On exit, if INFO = 0, the transformed matrix, stored in the same format as A.
BPBP is COMPLEX*16 array, dimension (N*(N+1)/2) The triangular factor from the Cholesky factorization of B, stored in the same format as A, as returned by ZPPTRF.
INFOINFO is INTEGER = 0: successful exit < 0: if INFO = i, the ith argument had an illegal value
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2011
Definition at line 114 of file zhpgst.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.