zlagtm (3)  Linux Manuals
NAME
zlagtm.f 
SYNOPSIS
Functions/Subroutines
subroutine zlagtm (TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA, B, LDB)
ZLAGTM performs a matrixmatrix product of the form C = αAB+βC, where A is a tridiagonal matrix, B and C are rectangular matrices, and α and β are scalars, which may be 0, 1, or 1.
Function/Subroutine Documentation
subroutine zlagtm (characterTRANS, integerN, integerNRHS, double precisionALPHA, complex*16, dimension( * )DL, complex*16, dimension( * )D, complex*16, dimension( * )DU, complex*16, dimension( ldx, * )X, integerLDX, double precisionBETA, complex*16, dimension( ldb, * )B, integerLDB)
ZLAGTM performs a matrixmatrix product of the form C = αAB+βC, where A is a tridiagonal matrix, B and C are rectangular matrices, and α and β are scalars, which may be 0, 1, or 1.
Purpose:

ZLAGTM performs a matrixvector product of the form B := alpha * A * X + beta * B where A is a tridiagonal matrix of order N, B and X are N by NRHS matrices, and alpha and beta are real scalars, each of which may be 0., 1., or 1.
Parameters:

TRANS
TRANS is CHARACTER*1 Specifies the operation applied to A. = 'N': No transpose, B := alpha * A * X + beta * B = 'T': Transpose, B := alpha * A**T * X + beta * B = 'C': Conjugate transpose, B := alpha * A**H * X + beta * B
NN is INTEGER The order of the matrix A. N >= 0.
NRHSNRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices X and B.
ALPHAALPHA is DOUBLE PRECISION The scalar alpha. ALPHA must be 0., 1., or 1.; otherwise, it is assumed to be 0.
DLDL is COMPLEX*16 array, dimension (N1) The (n1) subdiagonal elements of T.
DD is COMPLEX*16 array, dimension (N) The diagonal elements of T.
DUDU is COMPLEX*16 array, dimension (N1) The (n1) superdiagonal elements of T.
XX is COMPLEX*16 array, dimension (LDX,NRHS) The N by NRHS matrix X.
LDXLDX is INTEGER The leading dimension of the array X. LDX >= max(N,1).
BETABETA is DOUBLE PRECISION The scalar beta. BETA must be 0., 1., or 1.; otherwise, it is assumed to be 1.
BB is COMPLEX*16 array, dimension (LDB,NRHS) On entry, the N by NRHS matrix B. On exit, B is overwritten by the matrix expression B := alpha * A * X + beta * B.
LDBLDB is INTEGER The leading dimension of the array B. LDB >= max(N,1).
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 September 2012
Definition at line 145 of file zlagtm.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.