ztprfs (3) - Linux Manuals
NAME
ztprfs.f -
SYNOPSIS
Functions/Subroutines
subroutine ztprfs (UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)
ZTPRFS
Function/Subroutine Documentation
subroutine ztprfs (characterUPLO, characterTRANS, characterDIAG, integerN, integerNRHS, complex*16, dimension( * )AP, complex*16, dimension( ldb, * )B, integerLDB, complex*16, dimension( ldx, * )X, integerLDX, double precision, dimension( * )FERR, double precision, dimension( * )BERR, complex*16, dimension( * )WORK, double precision, dimension( * )RWORK, integerINFO)
ZTPRFS
Purpose:
-
ZTPRFS provides error bounds and backward error estimates for the solution to a system of linear equations with a triangular packed coefficient matrix. The solution matrix X must be computed by ZTPTRS or some other means before entering this routine. ZTPRFS does not do iterative refinement because doing so cannot improve the backward error.
Parameters:
-
UPLO
UPLO is CHARACTER*1 = 'U': A is upper triangular; = 'L': A is lower triangular.
TRANSTRANS is CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose)
DIAGDIAG is CHARACTER*1 = 'N': A is non-unit triangular; = 'U': A is unit triangular.
NN is INTEGER The order of the matrix A. N >= 0.
NRHSNRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0.
APAP is COMPLEX*16 array, dimension (N*(N+1)/2) The upper or lower triangular matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. If DIAG = 'U', the diagonal elements of A are not referenced and are assumed to be 1.
BB is COMPLEX*16 array, dimension (LDB,NRHS) The right hand side matrix B.
LDBLDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
XX is COMPLEX*16 array, dimension (LDX,NRHS) The solution matrix X.
LDXLDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).
FERRFERR is DOUBLE PRECISION array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error.
BERRBERR is DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution).
WORKWORK is COMPLEX*16 array, dimension (2*N)
RWORKRWORK is DOUBLE PRECISION array, dimension (N)
INFOINFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
Author:
-
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
- November 2011
Definition at line 174 of file ztprfs.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.