ztrevc.f (3)  Linux Manuals
NAME
ztrevc.f 
SYNOPSIS
Functions/Subroutines
subroutine ztrevc (SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, LDVR, MM, M, WORK, RWORK, INFO)
ZTREVC
Function/Subroutine Documentation
subroutine ztrevc (characterSIDE, characterHOWMNY, logical, dimension( * )SELECT, integerN, complex*16, dimension( ldt, * )T, integerLDT, complex*16, dimension( ldvl, * )VL, integerLDVL, complex*16, dimension( ldvr, * )VR, integerLDVR, integerMM, integerM, complex*16, dimension( * )WORK, double precision, dimension( * )RWORK, integerINFO)
ZTREVC
Purpose:

ZTREVC computes some or all of the right and/or left eigenvectors of a complex upper triangular matrix T. Matrices of this type are produced by the Schur factorization of a complex general matrix: A = Q*T*Q**H, as computed by ZHSEQR. The right eigenvector x and the left eigenvector y of T corresponding to an eigenvalue w are defined by: T*x = w*x, (y**H)*T = w*(y**H) where y**H denotes the conjugate transpose of the vector y. The eigenvalues are not input to this routine, but are read directly from the diagonal of T. This routine returns the matrices X and/or Y of right and left eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an input matrix. If Q is the unitary factor that reduces a matrix A to Schur form T, then Q*X and Q*Y are the matrices of right and left eigenvectors of A.
Parameters:

SIDE
SIDE is CHARACTER*1 = 'R': compute right eigenvectors only; = 'L': compute left eigenvectors only; = 'B': compute both right and left eigenvectors.
HOWMNYHOWMNY is CHARACTER*1 = 'A': compute all right and/or left eigenvectors; = 'B': compute all right and/or left eigenvectors, backtransformed using the matrices supplied in VR and/or VL; = 'S': compute selected right and/or left eigenvectors, as indicated by the logical array SELECT.
SELECTSELECT is LOGICAL array, dimension (N) If HOWMNY = 'S', SELECT specifies the eigenvectors to be computed. The eigenvector corresponding to the jth eigenvalue is computed if SELECT(j) = .TRUE.. Not referenced if HOWMNY = 'A' or 'B'.
NN is INTEGER The order of the matrix T. N >= 0.
TT is COMPLEX*16 array, dimension (LDT,N) The upper triangular matrix T. T is modified, but restored on exit.
LDTLDT is INTEGER The leading dimension of the array T. LDT >= max(1,N).
VLVL is COMPLEX*16 array, dimension (LDVL,MM) On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must contain an NbyN matrix Q (usually the unitary matrix Q of Schur vectors returned by ZHSEQR). On exit, if SIDE = 'L' or 'B', VL contains: if HOWMNY = 'A', the matrix Y of left eigenvectors of T; if HOWMNY = 'B', the matrix Q*Y; if HOWMNY = 'S', the left eigenvectors of T specified by SELECT, stored consecutively in the columns of VL, in the same order as their eigenvalues. Not referenced if SIDE = 'R'.
LDVLLDVL is INTEGER The leading dimension of the array VL. LDVL >= 1, and if SIDE = 'L' or 'B', LDVL >= N.
VRVR is COMPLEX*16 array, dimension (LDVR,MM) On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must contain an NbyN matrix Q (usually the unitary matrix Q of Schur vectors returned by ZHSEQR). On exit, if SIDE = 'R' or 'B', VR contains: if HOWMNY = 'A', the matrix X of right eigenvectors of T; if HOWMNY = 'B', the matrix Q*X; if HOWMNY = 'S', the right eigenvectors of T specified by SELECT, stored consecutively in the columns of VR, in the same order as their eigenvalues. Not referenced if SIDE = 'L'.
LDVRLDVR is INTEGER The leading dimension of the array VR. LDVR >= 1, and if SIDE = 'R' or 'B'; LDVR >= N.
MMMM is INTEGER The number of columns in the arrays VL and/or VR. MM >= M.
MM is INTEGER The number of columns in the arrays VL and/or VR actually used to store the eigenvectors. If HOWMNY = 'A' or 'B', M is set to N. Each selected eigenvector occupies one column.
WORKWORK is COMPLEX*16 array, dimension (2*N)
RWORKRWORK is DOUBLE PRECISION array, dimension (N)
INFOINFO is INTEGER = 0: successful exit < 0: if INFO = i, the ith argument had an illegal value
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2011
Further Details:

The algorithm used in this program is basically backward (forward) substitution, with scaling to make the the code robust against possible overflow. Each eigenvector is normalized so that the element of largest magnitude has magnitude 1; here the magnitude of a complex number (x,y) is taken to be x + y.
Definition at line 218 of file ztrevc.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.