DORMRZ (3)  Linux Manuals
NAME
dormrz.f 
SYNOPSIS
Functions/Subroutines
subroutine dormrz (SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
DORMRZ
Function/Subroutine Documentation
subroutine dormrz (characterSIDE, characterTRANS, integerM, integerN, integerK, integerL, double precision, dimension( lda, * )A, integerLDA, double precision, dimension( * )TAU, double precision, dimension( ldc, * )C, integerLDC, double precision, dimension( * )WORK, integerLWORK, integerINFO)
DORMRZ
Purpose:

DORMRZ overwrites the general real MbyN matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'T': Q**T * C C * Q**T where Q is a real orthogonal matrix defined as the product of k elementary reflectors Q = H(1) H(2) . . . H(k) as returned by DTZRZF. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'.
Parameters:

SIDE
SIDE is CHARACTER*1 = 'L': apply Q or Q**T from the Left; = 'R': apply Q or Q**T from the Right.
TRANSTRANS is CHARACTER*1 = 'N': No transpose, apply Q; = 'T': Transpose, apply Q**T.
MM is INTEGER The number of rows of the matrix C. M >= 0.
NN is INTEGER The number of columns of the matrix C. N >= 0.
KK is INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0.
LL is INTEGER The number of columns of the matrix A containing the meaningful part of the Householder reflectors. If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
AA is DOUBLE PRECISION array, dimension (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The ith row must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by DTZRZF in the last k rows of its array argument A. A is modified by the routine but restored on exit.
LDALDA is INTEGER The leading dimension of the array A. LDA >= max(1,K).
TAUTAU is DOUBLE PRECISION array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by DTZRZF.
CC is DOUBLE PRECISION array, dimension (LDC,N) On entry, the MbyN matrix C. On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
LDCLDC is INTEGER The leading dimension of the array C. LDC >= max(1,M).
WORKWORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORKLWORK is INTEGER The dimension of the array WORK. If SIDE = 'L', LWORK >= max(1,N); if SIDE = 'R', LWORK >= max(1,M). For optimum performance LWORK >= N*NB if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R', where NB is the optimal blocksize. If LWORK = 1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFOINFO is INTEGER = 0: successful exit < 0: if INFO = i, the ith argument had an illegal value
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2011
Contributors:
 A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
Further Details:
Definition at line 189 of file dormrz.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.