# cposv (3) - Linux Manuals

cposv.f -

## SYNOPSIS

### Functions/Subroutines

subroutine cposv (UPLO, N, NRHS, A, LDA, B, LDB, INFO)
CPOSV computes the solution to system of linear equations A * X = B for PO matrices

## Function/Subroutine Documentation

### subroutine cposv (characterUPLO, integerN, integerNRHS, complex, dimension( lda, * )A, integerLDA, complex, dimension( ldb, * )B, integerLDB, integerINFO)

CPOSV computes the solution to system of linear equations A * X = B for PO matrices

Purpose:

``` CPOSV computes the solution to a complex system of linear equations
A * X = B,
where A is an N-by-N Hermitian positive definite matrix and X and B
are N-by-NRHS matrices.

The Cholesky decomposition is used to factor A as
A = U**H* U,  if UPLO = 'U', or
A = L * L**H,  if UPLO = 'L',
where U is an upper triangular matrix and  L is a lower triangular
matrix.  The factored form of A is then used to solve the system of
equations A * X = B.
```

Parameters:

UPLO

```          UPLO is CHARACTER*1
= 'U':  Upper triangle of A is stored;
= 'L':  Lower triangle of A is stored.
```

N

```          N is INTEGER
The number of linear equations, i.e., the order of the
matrix A.  N >= 0.
```

NRHS

```          NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B.  NRHS >= 0.
```

A

```          A is COMPLEX array, dimension (LDA,N)
On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced.  If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.

On exit, if INFO = 0, the factor U or L from the Cholesky
factorization A = U**H*U or A = L*L**H.
```

LDA

```          LDA is INTEGER
The leading dimension of the array A.  LDA >= max(1,N).
```

B

```          B is COMPLEX array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
```

LDB

```          LDB is INTEGER
The leading dimension of the array B.  LDB >= max(1,N).
```

INFO

```          INFO is INTEGER
= 0:  successful exit
< 0:  if INFO = -i, the i-th argument had an illegal value
> 0:  if INFO = i, the leading minor of order i of A is not
positive definite, so the factorization could not be
completed, and the solution has not been computed.
```

Author:

Univ. of Tennessee

Univ. of California Berkeley