cppsv.f (3)  Linux Man Pages
NAME
cppsv.f 
SYNOPSIS
Functions/Subroutines
subroutine cppsv (UPLO, N, NRHS, AP, B, LDB, INFO)
CPPSV computes the solution to system of linear equations A * X = B for OTHER matrices
Function/Subroutine Documentation
subroutine cppsv (characterUPLO, integerN, integerNRHS, complex, dimension( * )AP, complex, dimension( ldb, * )B, integerLDB, integerINFO)
CPPSV computes the solution to system of linear equations A * X = B for OTHER matrices
Purpose:

CPPSV computes the solution to a complex system of linear equations A * X = B, where A is an NbyN Hermitian positive definite matrix stored in packed format and X and B are NbyNRHS matrices. The Cholesky decomposition is used to factor A as A = U**H * U, if UPLO = 'U', or A = L * L**H, if UPLO = 'L', where U is an upper triangular matrix and L is a lower triangular matrix. The factored form of A is then used to solve the system of equations A * X = B.
Parameters:

UPLO
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.
NN is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0.
NRHSNRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
APAP is COMPLEX array, dimension (N*(N+1)/2) On entry, the upper or lower triangle of the Hermitian matrix A, packed columnwise in a linear array. The jth column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j1)*(2nj)/2) = A(i,j) for j<=i<=n. See below for further details. On exit, if INFO = 0, the factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, in the same storage format as A.
BB is COMPLEX array, dimension (LDB,NRHS) On entry, the NbyNRHS right hand side matrix B. On exit, if INFO = 0, the NbyNRHS solution matrix X.
LDBLDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
INFOINFO is INTEGER = 0: successful exit < 0: if INFO = i, the ith argument had an illegal value > 0: if INFO = i, the leading minor of order i of A is not positive definite, so the factorization could not be completed, and the solution has not been computed.
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2011
Further Details:

The packed storage scheme is illustrated by the following example when N = 4, UPLO = 'U': Twodimensional storage of the Hermitian matrix A: a11 a12 a13 a14 a22 a23 a24 a33 a34 (aij = conjg(aji)) a44 Packed storage of the upper triangle of A: AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
Definition at line 145 of file cppsv.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.