dggrqf.f (3)  Linux Man Pages
NAME
dggrqf.f 
SYNOPSIS
Functions/Subroutines
subroutine dggrqf (M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK, LWORK, INFO)
DGGRQF
Function/Subroutine Documentation
subroutine dggrqf (integerM, integerP, integerN, double precision, dimension( lda, * )A, integerLDA, double precision, dimension( * )TAUA, double precision, dimension( ldb, * )B, integerLDB, double precision, dimension( * )TAUB, double precision, dimension( * )WORK, integerLWORK, integerINFO)
DGGRQF
Purpose:

DGGRQF computes a generalized RQ factorization of an MbyN matrix A and a PbyN matrix B: A = R*Q, B = Z*T*Q, where Q is an NbyN orthogonal matrix, Z is a PbyP orthogonal matrix, and R and T assume one of the forms: if M <= N, R = ( 0 R12 ) M, or if M > N, R = ( R11 ) MN, NM M ( R21 ) N N where R12 or R21 is upper triangular, and if P >= N, T = ( T11 ) N , or if P < N, T = ( T11 T12 ) P, ( 0 ) PN P NP N where T11 is upper triangular. In particular, if B is square and nonsingular, the GRQ factorization of A and B implicitly gives the RQ factorization of A*inv(B): A*inv(B) = (R*inv(T))*Z**T where inv(B) denotes the inverse of the matrix B, and Z**T denotes the transpose of the matrix Z.
Parameters:

M
M is INTEGER The number of rows of the matrix A. M >= 0.
PP is INTEGER The number of rows of the matrix B. P >= 0.
NN is INTEGER The number of columns of the matrices A and B. N >= 0.
AA is DOUBLE PRECISION array, dimension (LDA,N) On entry, the MbyN matrix A. On exit, if M <= N, the upper triangle of the subarray A(1:M,NM+1:N) contains the MbyM upper triangular matrix R; if M > N, the elements on and above the (MN)th subdiagonal contain the MbyN upper trapezoidal matrix R; the remaining elements, with the array TAUA, represent the orthogonal matrix Q as a product of elementary reflectors (see Further Details).
LDALDA is INTEGER The leading dimension of the array A. LDA >= max(1,M).
TAUATAUA is DOUBLE PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors which represent the orthogonal matrix Q (see Further Details).
BB is DOUBLE PRECISION array, dimension (LDB,N) On entry, the PbyN matrix B. On exit, the elements on and above the diagonal of the array contain the min(P,N)byN upper trapezoidal matrix T (T is upper triangular if P >= N); the elements below the diagonal, with the array TAUB, represent the orthogonal matrix Z as a product of elementary reflectors (see Further Details).
LDBLDB is INTEGER The leading dimension of the array B. LDB >= max(1,P).
TAUBTAUB is DOUBLE PRECISION array, dimension (min(P,N)) The scalar factors of the elementary reflectors which represent the orthogonal matrix Z (see Further Details).
WORKWORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORKLWORK is INTEGER The dimension of the array WORK. LWORK >= max(1,N,M,P). For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3), where NB1 is the optimal blocksize for the RQ factorization of an MbyN matrix, NB2 is the optimal blocksize for the QR factorization of a PbyN matrix, and NB3 is the optimal blocksize for a call of DORMRQ. If LWORK = 1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFOINFO is INTEGER = 0: successful exit < 0: if INF0= i, the ith argument had an illegal value.
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2011
Further Details:

The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I  taua * v * v**T where taua is a real scalar, and v is a real vector with v(nk+i+1:n) = 0 and v(nk+i) = 1; v(1:nk+i1) is stored on exit in A(mk+i,1:nk+i1), and taua in TAUA(i). To form Q explicitly, use LAPACK subroutine DORGRQ. To use Q to update another matrix, use LAPACK subroutine DORMRQ. The matrix Z is represented as a product of elementary reflectors Z = H(1) H(2) . . . H(k), where k = min(p,n). Each H(i) has the form H(i) = I  taub * v * v**T where taub is a real scalar, and v is a real vector with v(1:i1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i), and taub in TAUB(i). To form Z explicitly, use LAPACK subroutine DORGQR. To use Z to update another matrix, use LAPACK subroutine DORMQR.
Definition at line 214 of file dggrqf.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Linux man pages generated by: SysTutorials
Linux Man Pages Copyright Respective Owners. Site Copyright © SysTutorials. All Rights Reserved.