dsytrd (3)  Linux Manuals
NAME
dsytrd.f 
SYNOPSIS
Functions/Subroutines
subroutine dsytrd (UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO)
DSYTRD
Function/Subroutine Documentation
subroutine dsytrd (characterUPLO, integerN, double precision, dimension( lda, * )A, integerLDA, double precision, dimension( * )D, double precision, dimension( * )E, double precision, dimension( * )TAU, double precision, dimension( * )WORK, integerLWORK, integerINFO)
DSYTRD
Purpose:

DSYTRD reduces a real symmetric matrix A to real symmetric tridiagonal form T by an orthogonal similarity transformation: Q**T * A * Q = T.
Parameters:

UPLO
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.
NN is INTEGER The order of the matrix A. N >= 0.
AA is DOUBLE PRECISION array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = 'U', the leading NbyN upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading NbyN lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if UPLO = 'U', the diagonal and first superdiagonal of A are overwritten by the corresponding elements of the tridiagonal matrix T, and the elements above the first superdiagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors; if UPLO = 'L', the diagonal and first subdiagonal of A are over written by the corresponding elements of the tridiagonal matrix T, and the elements below the first subdiagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors. See Further Details.
LDALDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
DD is DOUBLE PRECISION array, dimension (N) The diagonal elements of the tridiagonal matrix T: D(i) = A(i,i).
EE is DOUBLE PRECISION array, dimension (N1) The offdiagonal elements of the tridiagonal matrix T: E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
TAUTAU is DOUBLE PRECISION array, dimension (N1) The scalar factors of the elementary reflectors (see Further Details).
WORKWORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORKLWORK is INTEGER The dimension of the array WORK. LWORK >= 1. For optimum performance LWORK >= N*NB, where NB is the optimal blocksize. If LWORK = 1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFOINFO is INTEGER = 0: successful exit < 0: if INFO = i, the ith argument had an illegal value
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2011
Further Details:

If UPLO = 'U', the matrix Q is represented as a product of elementary reflectors Q = H(n1) . . . H(2) H(1). Each H(i) has the form H(i) = I  tau * v * v**T where tau is a real scalar, and v is a real vector with v(i+1:n) = 0 and v(i) = 1; v(1:i1) is stored on exit in A(1:i1,i+1), and tau in TAU(i). If UPLO = 'L', the matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(n1). Each H(i) has the form H(i) = I  tau * v * v**T where tau is a real scalar, and v is a real vector with v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), and tau in TAU(i). The contents of A on exit are illustrated by the following examples with n = 5: if UPLO = 'U': if UPLO = 'L': ( d e v2 v3 v4 ) ( d ) ( d e v3 v4 ) ( e d ) ( d e v4 ) ( v1 e d ) ( d e ) ( v1 v2 e d ) ( d ) ( v1 v2 v3 e d ) where d and e denote diagonal and offdiagonal elements of T, and vi denotes an element of the vector defining H(i).
Definition at line 193 of file dsytrd.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.