sgebrd (3)  Linux Man Pages
NAME
sgebrd.f 
SYNOPSIS
Functions/Subroutines
subroutine sgebrd (M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, INFO)
SGEBRD
Function/Subroutine Documentation
subroutine sgebrd (integerM, integerN, real, dimension( lda, * )A, integerLDA, real, dimension( * )D, real, dimension( * )E, real, dimension( * )TAUQ, real, dimension( * )TAUP, real, dimension( * )WORK, integerLWORK, integerINFO)
SGEBRD
Purpose:

SGEBRD reduces a general real MbyN matrix A to upper or lower bidiagonal form B by an orthogonal transformation: Q**T * A * P = B. If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
Parameters:

M
M is INTEGER The number of rows in the matrix A. M >= 0.
NN is INTEGER The number of columns in the matrix A. N >= 0.
AA is REAL array, dimension (LDA,N) On entry, the MbyN general matrix to be reduced. On exit, if m >= n, the diagonal and the first superdiagonal are overwritten with the upper bidiagonal matrix B; the elements below the diagonal, with the array TAUQ, represent the orthogonal matrix Q as a product of elementary reflectors, and the elements above the first superdiagonal, with the array TAUP, represent the orthogonal matrix P as a product of elementary reflectors; if m < n, the diagonal and the first subdiagonal are overwritten with the lower bidiagonal matrix B; the elements below the first subdiagonal, with the array TAUQ, represent the orthogonal matrix Q as a product of elementary reflectors, and the elements above the diagonal, with the array TAUP, represent the orthogonal matrix P as a product of elementary reflectors. See Further Details.
LDALDA is INTEGER The leading dimension of the array A. LDA >= max(1,M).
DD is REAL array, dimension (min(M,N)) The diagonal elements of the bidiagonal matrix B: D(i) = A(i,i).
EE is REAL array, dimension (min(M,N)1) The offdiagonal elements of the bidiagonal matrix B: if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n1; if m < n, E(i) = A(i+1,i) for i = 1,2,...,m1.
TAUQTAUQ is REAL array dimension (min(M,N)) The scalar factors of the elementary reflectors which represent the orthogonal matrix Q. See Further Details.
TAUPTAUP is REAL array, dimension (min(M,N)) The scalar factors of the elementary reflectors which represent the orthogonal matrix P. See Further Details.
WORKWORK is REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORKLWORK is INTEGER The length of the array WORK. LWORK >= max(1,M,N). For optimum performance LWORK >= (M+N)*NB, where NB is the optimal blocksize. If LWORK = 1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFOINFO is INTEGER = 0: successful exit < 0: if INFO = i, the ith argument had an illegal value.
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2011
Further Details:

The matrices Q and P are represented as products of elementary reflectors: If m >= n, Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n1) Each H(i) and G(i) has the form: H(i) = I  tauq * v * v**T and G(i) = I  taup * u * u**T where tauq and taup are real scalars, and v and u are real vectors; v(1:i1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i). If m < n, Q = H(1) H(2) . . . H(m1) and P = G(1) G(2) . . . G(m) Each H(i) and G(i) has the form: H(i) = I  tauq * v * v**T and G(i) = I  taup * u * u**T where tauq and taup are real scalars, and v and u are real vectors; v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i); u(1:i1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). The contents of A on exit are illustrated by the following examples: m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 ) ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 ) ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 ) ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 ) ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 ) ( v1 v2 v3 v4 v5 ) where d and e denote diagonal and offdiagonal elements of B, vi denotes an element of the vector defining H(i), and ui an element of the vector defining G(i).
Definition at line 205 of file sgebrd.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.