# std::assoc_laguerre,std::assoc_laguerref,std::assoc_laguerrel (3) - Linux Man Pages

## NAME

std::assoc_laguerre,std::assoc_laguerref,std::assoc_laguerrel - std::assoc_laguerre,std::assoc_laguerref,std::assoc_laguerrel

## Synopsis

double assoc_laguerre( unsigned int n, unsigned int m, double x );
float assoc_laguerre( unsigned int n, unsigned int m, float x );
long double assoc_laguerre( unsigned int n, unsigned int m, long double x ); (1) (since C++17)
float assoc_laguerref( unsigned int n, unsigned int m, float x );
long double assoc_laguerrel( unsigned int n, unsigned int m, long double x );
double assoc_laguerre( unsigned int n, unsigned int m, IntegralType x ); (2) (since C++17)

1) Computes the associated_Laguerre_polynomials of the degree n, order m, and argument x
2) A set of overloads or a function template accepting an argument of any integral_type. Equivalent to (1) after casting the argument to double.

## Parameters

n - the degree of the polymonial, a value of unsigned integer type
m - the order of the polynomial, a value of unsigned integer type
x - the argument, a value of a floating-point or integral type

## Return value

If no errors occur, value of the associated Laguerre polynomial of x, that is $$(-1)^m \: \frac{ \mathsf{d} ^ m}{ \mathsf{d}x ^ m} \, \mathsf{L}_{n+m}(x)$$(-1)m

dm
dxm

L
n+m(x), is returned (where $$\mathsf{L}_{n+m}(x)$$L
n+m(x) is the unassociated Laguerre polynomial, std::laguerre(n+m, x)).

## Error handling

Errors may be reported as specified in math_errhandling

* If the argument is NaN, NaN is returned and domain error is not reported
* If x is negative, a domain error may occur
* If n or m is greater or equal to 128, the behavior is implementation-defined.

## Notes

Implementations that do not support C++17, but support ISO_29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath and namespace std::tr1
An implementation of this function is also available_in_boost.math
The associated Laguerre polynomials are the polynomial solutions of the equation $$x\ddot{y} + (m+1-x)\dot{y} + ny = 0$$xy,,
+(m+1-x)y,
+ny = 0
The first few are:

* assoc_laguerre(0, m, x) = 1
* assoc_laguerre(1, m, x) = -x + m + 1
* assoc_laguerre(2, m, x) =

1
2

[x2
-2(m+2)x+(m+1)(m+2)]
* assoc_laguerre(3, m, x) =

1
6

[-x3
-3(m+3)x2
-3(m+2)(m+3)x+(m+1)(m+2)(m+3)]

## Example

// Run this code

#include <cmath>
#include <iostream>
double L1(unsigned m, double x) { return -x + m + 1; }
double L2(unsigned m, double x) { return 0.5*(x*x-2*(m+2)*x+(m+1)*(m+2)); }
int main()
{
// spot-checks
std::cout << std::assoc_laguerre(1, 10, 0.5) << '=' << L1(10, 0.5) << '\n'
<< std::assoc_laguerre(2, 10, 0.5) << '=' << L2(10, 0.5) << '\n';
}

## Output:

10.5=10.5
60.125=60.125

Weisstein,_Eric_W._"Associated_Laguerre_Polynomial." From MathWorld--A Wolfram Web Resource.