dspgv (l)  Linux Manuals
dspgv: computes all the eigenvalues and, optionally, the eigenvectors of a real generalized symmetricdefinite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
Command to display dspgv
manual in Linux: $ man l dspgv
NAME
DSPGV  computes all the eigenvalues and, optionally, the eigenvectors of a real generalized symmetricdefinite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
SYNOPSIS
 SUBROUTINE DSPGV(

ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
INFO )

CHARACTER
JOBZ, UPLO

INTEGER
INFO, ITYPE, LDZ, N

DOUBLE
PRECISION AP( * ), BP( * ), W( * ), WORK( * ),
Z( LDZ, * )
PURPOSE
DSPGV computes all the eigenvalues and, optionally, the eigenvectors
of a real generalized symmetricdefinite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
Here A and B are assumed to be symmetric, stored in packed format,
and B is also positive definite.
ARGUMENTS
 ITYPE (input) INTEGER

Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
 JOBZ (input) CHARACTER*1

= aqNaq: Compute eigenvalues only;
= aqVaq: Compute eigenvalues and eigenvectors.
 UPLO (input) CHARACTER*1

= aqUaq: Upper triangles of A and B are stored;
= aqLaq: Lower triangles of A and B are stored.
 N (input) INTEGER

The order of the matrices A and B. N >= 0.
 AP (input/output) DOUBLE PRECISION array, dimension

(N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The jth column of A
is stored in the array AP as follows:
if UPLO = aqUaq, AP(i + (j1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = aqLaq, AP(i + (j1)*(2*nj)/2) = A(i,j) for j<=i<=n.
On exit, the contents of AP are destroyed.
 BP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)

On entry, the upper or lower triangle of the symmetric matrix
B, packed columnwise in a linear array. The jth column of B
is stored in the array BP as follows:
if UPLO = aqUaq, BP(i + (j1)*j/2) = B(i,j) for 1<=i<=j;
if UPLO = aqLaq, BP(i + (j1)*(2*nj)/2) = B(i,j) for j<=i<=n.
On exit, the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T, in the same storage
format as B.
 W (output) DOUBLE PRECISION array, dimension (N)

If INFO = 0, the eigenvalues in ascending order.
 Z (output) DOUBLE PRECISION array, dimension (LDZ, N)

If JOBZ = aqVaq, then if INFO = 0, Z contains the matrix Z of
eigenvectors. The eigenvectors are normalized as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.
If JOBZ = aqNaq, then Z is not referenced.
 LDZ (input) INTEGER

The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = aqVaq, LDZ >= max(1,N).
 WORK (workspace) DOUBLE PRECISION array, dimension (3*N)

 INFO (output) INTEGER

= 0: successful exit
< 0: if INFO = i, the ith argument had an illegal value
> 0: DPPTRF or DSPEV returned an error code:
<= N: if INFO = i, DSPEV failed to converge;
i offdiagonal elements of an intermediate
tridiagonal form did not converge to zero.
> N: if INFO = n + i, for 1 <= i <= n, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
Pages related to dspgv
 dspgv (3)
 dspgvd (l)  computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetricdefinite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
 dspgvx (l)  computes selected eigenvalues, and optionally, eigenvectors of a real generalized symmetricdefinite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
 dspgst (l)  reduces a real symmetricdefinite generalized eigenproblem to standard form, using packed storage
 dspcon (l)  estimates the reciprocal of the condition number (in the 1norm) of a real symmetric packed matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by DSPTRF
 dspev (l)  computes all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed storage
 dspevd (l)  computes all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed storage
 dspevx (l)  computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed storage
 dspmv (l)  performs the matrixvector operation y := alpha*A*x + beta*y,