slagv2 (l) - Linux Manuals
slagv2: computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular
Command to display slagv2
manual in Linux: $ man l slagv2
NAME
SLAGV2 - computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular
SYNOPSIS
- SUBROUTINE SLAGV2(
-
A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL,
CSR, SNR )
-
INTEGER
LDA, LDB
-
REAL
CSL, CSR, SNL, SNR
-
REAL
A( LDA, * ), ALPHAI( 2 ), ALPHAR( 2 ),
B( LDB, * ), BETA( 2 )
PURPOSE
SLAGV2 computes the Generalized Schur factorization of a real 2-by-2
matrix pencil (A,B) where B is upper triangular. This routine
computes orthogonal (rotation) matrices given by CSL, SNL and CSR,
SNR such that
1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0
types), then
[
a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]
[ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]
[ b11 b12 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ]
[ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ],
2) if the pencil (A,B) has a pair of complex conjugate eigenvalues,
then
[ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]
[ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]
[ b11 0 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ]
[ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ]
where b11 >= b22 > 0.
ARGUMENTS
- A (input/output) REAL array, dimension (LDA, 2)
-
On entry, the 2 x 2 matrix A.
On exit, A is overwritten by the ``A-partaqaq of the
generalized Schur form.
- LDA (input) INTEGER
-
THe leading dimension of the array A. LDA >= 2.
- B (input/output) REAL array, dimension (LDB, 2)
-
On entry, the upper triangular 2 x 2 matrix B.
On exit, B is overwritten by the ``B-partaqaq of the
generalized Schur form.
- LDB (input) INTEGER
-
THe leading dimension of the array B. LDB >= 2.
- ALPHAR (output) REAL array, dimension (2)
-
ALPHAI (output) REAL array, dimension (2)
BETA (output) REAL array, dimension (2)
(ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the
pencil (A,B), k=1,2, i = sqrt(-1). Note that BETA(k) may
be zero.
- CSL (output) REAL
-
The cosine of the left rotation matrix.
- SNL (output) REAL
-
The sine of the left rotation matrix.
- CSR (output) REAL
-
The cosine of the right rotation matrix.
- SNR (output) REAL
-
The sine of the right rotation matrix.
FURTHER DETAILS
Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
Pages related to slagv2
- slagv2 (3)
- slag2 (l) - computes the eigenvalues of a 2 x 2 generalized eigenvalue problem A - w B, with scaling as necessary to avoid over-/underflow
- slag2d (l) - converts a SINGLE PRECISION matrix, SA, to a DOUBLE PRECISION matrix, A
- slags2 (l) - computes 2-by-2 orthogonal matrices U, V and Q, such that if ( UPPER ) then Uaq*A*Q = Uaq*( A1 A2 )*Q = ( x 0 ) ( 0 A3 ) ( x x ) and Vaq*B*Q = Vaq*( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x ) or if ( .NOT.UPPER ) then Uaq*A*Q = Uaq*( A1 0 )*Q = ( x x ) ( A2 A3 ) ( 0 x ) and Vaq*B*Q = Vaq*( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x ) The rows of the transformed A and B are parallel, where U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) ( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ ) Zaq denotes the transpose of Z
- slagtf (l) - factorizes the matrix (T - lambda*I), where T is an n by n tridiagonal matrix and lambda is a scalar, as T - lambda*I = PLU,
- slagtm (l) - performs a matrix-vector product of the form B := alpha * A * X + beta * B where A is a tridiagonal matrix of order N, B and X are N by NRHS matrices, and alpha and beta are real scalars, each of which may be 0., 1., or -1
- slagts (l) - may be used to solve one of the systems of equations (T - lambda*I)*x = y or (T - lambda*I)aq*x = y,
- sla_gbamv (l) - performs one of the matrix-vector operations y := alpha*abs(A)*abs(x) + beta*abs(y),