zhprfs (l)  Linux Man Pages
zhprfs: improves the computed solution to a system of linear equations when the coefficient matrix is Hermitian indefinite and packed, and provides error bounds and backward error estimates for the solution
NAME
ZHPRFS  improves the computed solution to a system of linear equations when the coefficient matrix is Hermitian indefinite and packed, and provides error bounds and backward error estimates for the solutionSYNOPSIS
 SUBROUTINE ZHPRFS(
 UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
 CHARACTER UPLO
 INTEGER INFO, LDB, LDX, N, NRHS
 INTEGER IPIV( * )
 DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * )
 COMPLEX*16 AFP( * ), AP( * ), B( LDB, * ), WORK( * ), X( LDX, * )
PURPOSE
ZHPRFS improves the computed solution to a system of linear equations when the coefficient matrix is Hermitian indefinite and packed, and provides error bounds and backward error estimates for the solution.ARGUMENTS
 UPLO (input) CHARACTER*1

= aqUaq: Upper triangle of A is stored;
= aqLaq: Lower triangle of A is stored.  N (input) INTEGER
 The order of the matrix A. N >= 0.
 NRHS (input) INTEGER
 The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0.
 AP (input) COMPLEX*16 array, dimension (N*(N+1)/2)
 The upper or lower triangle of the Hermitian matrix A, packed columnwise in a linear array. The jth column of A is stored in the array AP as follows: if UPLO = aqUaq, AP(i + (j1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = aqLaq, AP(i + (j1)*(2*nj)/2) = A(i,j) for j<=i<=n.
 AFP (input) COMPLEX*16 array, dimension (N*(N+1)/2)
 The factored form of the matrix A. AFP contains the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**H or A = L*D*L**H as computed by ZHPTRF, stored as a packed triangular matrix.
 IPIV (input) INTEGER array, dimension (N)
 Details of the interchanges and the block structure of D as determined by ZHPTRF.
 B (input) COMPLEX*16 array, dimension (LDB,NRHS)
 The right hand side matrix B.
 LDB (input) INTEGER
 The leading dimension of the array B. LDB >= max(1,N).
 X (input/output) COMPLEX*16 array, dimension (LDX,NRHS)
 On entry, the solution matrix X, as computed by ZHPTRS. On exit, the improved solution matrix X.
 LDX (input) INTEGER
 The leading dimension of the array X. LDX >= max(1,N).
 FERR (output) DOUBLE PRECISION array, dimension (NRHS)
 The estimated forward error bound for each solution vector X(j) (the jth column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j)  XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error.
 BERR (output) DOUBLE PRECISION array, dimension (NRHS)
 The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution).
 WORK (workspace) COMPLEX*16 array, dimension (2*N)
 RWORK (workspace) DOUBLE PRECISION array, dimension (N)
 INFO (output) INTEGER

= 0: successful exit
< 0: if INFO = i, the ith argument had an illegal value
PARAMETERS
ITMAX is the maximum number of steps of iterative refinement.