dggsvd (l) - Linux Manuals
dggsvd: computes the generalized singular value decomposition (GSVD) of an M-by-N real matrix A and P-by-N real matrix B
NAME
DGGSVD - computes the generalized singular value decomposition (GSVD) of an M-by-N real matrix A and P-by-N real matrix BSYNOPSIS
- SUBROUTINE DGGSVD(
- JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B, LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, IWORK, INFO )
- CHARACTER JOBQ, JOBU, JOBV
- INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
- INTEGER IWORK( * )
- DOUBLE PRECISION A( LDA, * ), ALPHA( * ), B( LDB, * ), BETA( * ), Q( LDQ, * ), U( LDU, * ), V( LDV, * ), WORK( * )
PURPOSE
DGGSVD computes the generalized singular value decomposition (GSVD) of an M-by-N real matrix A and P-by-N real matrix B:where U, V and Q are orthogonal matrices, and Zaq is the transpose of Z. Let K+L = the effective numerical rank of the matrix (Aaq,Baq)aq, then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) "diagonal" matrices and of the following structures, respectively:
If M-K-L >= 0,
where
If M-K-L < 0,