dgtrfs (l) - Linux Manuals
dgtrfs: improves the computed solution to a system of linear equations when the coefficient matrix is tridiagonal, and provides error bounds and backward error estimates for the solution
Command to display dgtrfs manual in Linux: $ man l dgtrfs
NAME
DGTRFS - improves the computed solution to a system of linear equations when the coefficient matrix is tridiagonal, and provides error bounds and backward error estimates for the solution
SYNOPSIS
- SUBROUTINE DGTRFS(
-
TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2,
IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK,
INFO )
-
CHARACTER
TRANS
-
INTEGER
INFO, LDB, LDX, N, NRHS
-
INTEGER
IPIV( * ), IWORK( * )
-
DOUBLE
PRECISION B( LDB, * ), BERR( * ), D( * ), DF( * ),
DL( * ), DLF( * ), DU( * ), DU2( * ), DUF( * ),
FERR( * ), WORK( * ), X( LDX, * )
PURPOSE
DGTRFS improves the computed solution to a system of linear
equations when the coefficient matrix is tridiagonal, and provides
error bounds and backward error estimates for the solution.
ARGUMENTS
- TRANS (input) CHARACTER*1
-
Specifies the form of the system of equations:
= aqNaq: A * X = B (No transpose)
= aqTaq: A**T * X = B (Transpose)
= aqCaq: A**H * X = B (Conjugate transpose = Transpose)
- N (input) INTEGER
-
The order of the matrix A. N >= 0.
- NRHS (input) INTEGER
-
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
- DL (input) DOUBLE PRECISION array, dimension (N-1)
-
The (n-1) subdiagonal elements of A.
- D (input) DOUBLE PRECISION array, dimension (N)
-
The diagonal elements of A.
- DU (input) DOUBLE PRECISION array, dimension (N-1)
-
The (n-1) superdiagonal elements of A.
- DLF (input) DOUBLE PRECISION array, dimension (N-1)
-
The (n-1) multipliers that define the matrix L from the
LU factorization of A as computed by DGTTRF.
- DF (input) DOUBLE PRECISION array, dimension (N)
-
The n diagonal elements of the upper triangular matrix U from
the LU factorization of A.
- DUF (input) DOUBLE PRECISION array, dimension (N-1)
-
The (n-1) elements of the first superdiagonal of U.
- DU2 (input) DOUBLE PRECISION array, dimension (N-2)
-
The (n-2) elements of the second superdiagonal of U.
- IPIV (input) INTEGER array, dimension (N)
-
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
- B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
-
The right hand side matrix B.
- LDB (input) INTEGER
-
The leading dimension of the array B. LDB >= max(1,N).
- X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
-
On entry, the solution matrix X, as computed by DGTTRS.
On exit, the improved solution matrix X.
- LDX (input) INTEGER
-
The leading dimension of the array X. LDX >= max(1,N).
- FERR (output) DOUBLE PRECISION array, dimension (NRHS)
-
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
- BERR (output) DOUBLE PRECISION array, dimension (NRHS)
-
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
- WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
-
- IWORK (workspace) INTEGER array, dimension (N)
-
- INFO (output) INTEGER
-
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
PARAMETERS
ITMAX is the maximum number of steps of iterative refinement.