dlaqr4 (l) - Linux Manuals
dlaqr4: DLAQR4 compute the eigenvalues of a Hessenberg matrix H and, optionally, the matrices T and Z from the Schur decomposition H = Z T Z**T, where T is an upper quasi-triangular matrix (the Schur form), and Z is the orthogonal matrix of Schur vectors
NAME
DLAQR4 - DLAQR4 compute the eigenvalues of a Hessenberg matrix H and, optionally, the matrices T and Z from the Schur decomposition H = Z T Z**T, where T is an upper quasi-triangular matrix (the Schur form), and Z is the orthogonal matrix of Schur vectorsSYNOPSIS
- SUBROUTINE DLAQR4(
- WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO )
- INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
- LOGICAL WANTT, WANTZ
- DOUBLE PRECISION H( LDH, * ), WI( * ), WORK( * ), WR( * ), Z( LDZ, * )
PURPOSE
DLAQR4 computes the eigenvalues of a Hessenberg matrix H
and, optionally, the matrices T and Z from the Schur decomposition
H
Schur form), and Z is the orthogonal matrix of Schur vectors.
Optionally Z may be postmultiplied into an input orthogonal
matrix Q so that this routine can give the Schur factorization
of a matrix A which has been reduced to the Hessenberg form H
by the orthogonal matrix Q:
ARGUMENTS
- WANTT (input) LOGICAL
-
= .TRUE. : the full Schur form T is required;
= .FALSE.: only eigenvalues are required. - WANTZ (input) LOGICAL
-
= .TRUE. : the matrix of Schur vectors Z is required;
= .FALSE.: Schur vectors are not required. - N (input) INTEGER
- The order of the matrix H. N .GE. 0.
- ILO (input) INTEGER
- IHI (input) INTEGER It is assumed that H is already upper triangular in rows and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1, H(ILO,ILO-1) is zero. ILO and IHI are normally set by a previous call to DGEBAL, and then passed to DGEHRD when the matrix output by DGEBAL is reduced to Hessenberg form. Otherwise, ILO and IHI should be set to 1 and N, respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N. If N = 0, then ILO = 1 and IHI = 0.
- H (input/output) DOUBLE PRECISION array, dimension (LDH,N)
- On entry, the upper Hessenberg matrix H. On exit, if INFO = 0 and WANTT is .TRUE., then H contains the upper quasi-triangular matrix T from the Schur decomposition (the Schur form); 2-by-2 diagonal blocks (corresponding to complex conjugate pairs of eigenvalues) are returned in standard form, with H(i,i) = H(i+1,i+1) and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is .FALSE., then the contents of H are unspecified on exit. (The output value of H when INFO.GT.0 is given under the description of INFO below.) This subroutine may explicitly set H(i,j) = 0 for i.GT.j and j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
- LDH (input) INTEGER
- The leading dimension of the array H. LDH .GE. max(1,N).
- WR (output) DOUBLE PRECISION array, dimension (IHI)
-
WI (output) DOUBLE PRECISION array, dimension (IHI)
The real and imaginary parts, respectively, of the computed
eigenvalues of H(ILO:IHI,ILO:IHI) are stored in WR(ILO:IHI)
and WI(ILO:IHI). If two eigenvalues are computed as a complex conjugate pair, they are stored in consecutive elements of WR and WI, say the i-th and (i+1)th, with WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in H, with WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i). - ILOZ (input) INTEGER
- IHIZ (input) INTEGER Specify the rows of Z to which transformations must be applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N.
- Z (input/output) DOUBLE PRECISION array, dimension (LDZ,IHI)
-
If WANTZ is .FALSE., then Z is not referenced.
If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
orthogonal Schur factor of H(ILO:IHI,ILO:IHI). (The output value of Z when INFO.GT.0 is given under the description of INFO below.) - LDZ (input) INTEGER
- The leading dimension of the array Z. if WANTZ is .TRUE. then LDZ.GE.MAX(1,IHIZ). Otherwize, LDZ.GE.1.
- WORK (workspace/output) DOUBLE PRECISION array, dimension LWORK
- On exit, if LWORK = -1, WORK(1) returns an estimate of the optimal value for LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK .GE. max(1,N) is sufficient, but LWORK typically as large as 6*N may be required for optimal performance. A workspace query to determine the optimal workspace size is recommended. If LWORK = -1, then DLAQR4 does a workspace query. In this case, DLAQR4 checks the input parameters and estimates the optimal workspace size for the given values of N, ILO and IHI. The estimate is returned in WORK(1). No error message related to LWORK is issued by XERBLA. Neither H nor Z are accessed.
- INFO (output) INTEGER
-
= 0: successful exit
the eigenvalues. Elements 1:ilo-1 and i+1:n of WR and WI contain those eigenvalues which have been successfully computed. (Failures are rare.) If INFO .GT. 0 and WANT is .FALSE., then on exit, the remaining unconverged eigenvalues are the eigen- values of the upper Hessenberg matrix rows and columns ILO through INFO of the final, output value of H. If INFO .GT. 0 and WANTT is .TRUE., then on exit - (*) (initial value of H)*U = U*(final value of H)
-
where U is an orthogonal matrix. The final
value of H is upper Hessenberg and quasi-triangular
in rows and columns INFO+1 through IHI.
If INFO .GT. 0 and WANTZ is .TRUE., then on exit
(final value of Z(ILO:IHI,ILOZ:IHIZ)
= (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
where U is the orthogonal matrix in (*) (regard-
less of the value of WANTT.)
If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
accessed.