dptrfs (l) - Linux Manuals
dptrfs: improves the computed solution to a system of linear equations when the coefficient matrix is symmetric positive definite and tridiagonal, and provides error bounds and backward error estimates for the solution
Command to display dptrfs manual in Linux: $ man l dptrfs
NAME
DPTRFS - improves the computed solution to a system of linear equations when the coefficient matrix is symmetric positive definite and tridiagonal, and provides error bounds and backward error estimates for the solution
SYNOPSIS
- SUBROUTINE DPTRFS(
-
N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR,
BERR, WORK, INFO )
-
INTEGER
INFO, LDB, LDX, N, NRHS
-
DOUBLE
PRECISION B( LDB, * ), BERR( * ), D( * ), DF( * ),
E( * ), EF( * ), FERR( * ), WORK( * ),
X( LDX, * )
PURPOSE
DPTRFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric positive definite
and tridiagonal, and provides error bounds and backward error
estimates for the solution.
ARGUMENTS
- N (input) INTEGER
-
The order of the matrix A. N >= 0.
- NRHS (input) INTEGER
-
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
- D (input) DOUBLE PRECISION array, dimension (N)
-
The n diagonal elements of the tridiagonal matrix A.
- E (input) DOUBLE PRECISION array, dimension (N-1)
-
The (n-1) subdiagonal elements of the tridiagonal matrix A.
- DF (input) DOUBLE PRECISION array, dimension (N)
-
The n diagonal elements of the diagonal matrix D from the
factorization computed by DPTTRF.
- EF (input) DOUBLE PRECISION array, dimension (N-1)
-
The (n-1) subdiagonal elements of the unit bidiagonal factor
L from the factorization computed by DPTTRF.
- B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
-
The right hand side matrix B.
- LDB (input) INTEGER
-
The leading dimension of the array B. LDB >= max(1,N).
- X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
-
On entry, the solution matrix X, as computed by DPTTRS.
On exit, the improved solution matrix X.
- LDX (input) INTEGER
-
The leading dimension of the array X. LDX >= max(1,N).
- FERR (output) DOUBLE PRECISION array, dimension (NRHS)
-
The forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j).
- BERR (output) DOUBLE PRECISION array, dimension (NRHS)
-
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
- WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
-
- INFO (output) INTEGER
-
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
PARAMETERS
ITMAX is the maximum number of steps of iterative refinement.