dstevx (l)  Linux Manuals
dstevx: computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix A
Command to display dstevx
manual in Linux: $ man l dstevx
NAME
DSTEVX  computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix A
SYNOPSIS
 SUBROUTINE DSTEVX(

JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO )

CHARACTER
JOBZ, RANGE

INTEGER
IL, INFO, IU, LDZ, M, N

DOUBLE
PRECISION ABSTOL, VL, VU

INTEGER
IFAIL( * ), IWORK( * )

DOUBLE
PRECISION D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
PURPOSE
DSTEVX computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric tridiagonal matrix A. Eigenvalues and
eigenvectors can be selected by specifying either a range of values
or a range of indices for the desired eigenvalues.
ARGUMENTS
 JOBZ (input) CHARACTER*1

= aqNaq: Compute eigenvalues only;
= aqVaq: Compute eigenvalues and eigenvectors.
 RANGE (input) CHARACTER*1

= aqAaq: all eigenvalues will be found.
= aqVaq: all eigenvalues in the halfopen interval (VL,VU]
will be found.
= aqIaq: the ILth through IUth eigenvalues will be found.
 N (input) INTEGER

The order of the matrix. N >= 0.
 D (input/output) DOUBLE PRECISION array, dimension (N)

On entry, the n diagonal elements of the tridiagonal matrix
A.
On exit, D may be multiplied by a constant factor chosen
to avoid over/underflow in computing the eigenvalues.
 E (input/output) DOUBLE PRECISION array, dimension (max(1,N1))

On entry, the (n1) subdiagonal elements of the tridiagonal
matrix A in elements 1 to N1 of E.
On exit, E may be multiplied by a constant factor chosen
to avoid over/underflow in computing the eigenvalues.
 VL (input) DOUBLE PRECISION

VU (input) DOUBLE PRECISION
If RANGE=aqVaq, the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = aqAaq or aqIaq.
 IL (input) INTEGER

IU (input) INTEGER
If RANGE=aqIaq, the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = aqAaq or aqVaq.
 ABSTOL (input) DOUBLE PRECISION

The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( a,b ) ,
where EPS is the machine precision. If ABSTOL is less
than or equal to zero, then EPS*T will be used in
its place, where T is the 1norm of the tridiagonal
matrix.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*DLAMCH(aqSaq), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*DLAMCH(aqSaq).
See "Computing Small Singular Values of Bidiagonal Matrices
with Guaranteed High Relative Accuracy," by Demmel and
Kahan, LAPACK Working Note #3.
 M (output) INTEGER

The total number of eigenvalues found. 0 <= M <= N.
If RANGE = aqAaq, M = N, and if RANGE = aqIaq, M = IUIL+1.
 W (output) DOUBLE PRECISION array, dimension (N)

The first M elements contain the selected eigenvalues in
ascending order.
 Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )

If JOBZ = aqVaq, then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the ith
column of Z holding the eigenvector associated with W(i).
If an eigenvector fails to converge (INFO > 0), then that
column of Z contains the latest approximation to the
eigenvector, and the index of the eigenvector is returned
in IFAIL. If JOBZ = aqNaq, then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = aqVaq, the exact value of M
is not known in advance and an upper bound must be used.
 LDZ (input) INTEGER

The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = aqVaq, LDZ >= max(1,N).
 WORK (workspace) DOUBLE PRECISION array, dimension (5*N)

 IWORK (workspace) INTEGER array, dimension (5*N)

 IFAIL (output) INTEGER array, dimension (N)

If JOBZ = aqVaq, then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = aqNaq, then IFAIL is not referenced.
 INFO (output) INTEGER

= 0: successful exit
< 0: if INFO = i, the ith argument had an illegal value
> 0: if INFO = i, then i eigenvectors failed to converge.
Their indices are stored in array IFAIL.
Pages related to dstevx
 dstevx (3)
 dstev (l)  computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix A
 dstevd (l)  computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix
 dstevr (l)  computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix T
 dstebz (l)  computes the eigenvalues of a symmetric tridiagonal matrix T
 dstedc (l)  computes all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method
 dstegr (l)  computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix T
 dstein (l)  computes the eigenvectors of a real symmetric tridiagonal matrix T corresponding to specified eigenvalues, using inverse iteration
 dstemr (l)  computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix T
 dsteqr (l)  computes all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the implicit QL or QR method