dstevx (l) - Linux Manuals

NAME

DSTEVX - computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix A

SYNOPSIS

SUBROUTINE DSTEVX(
JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO )

CHARACTER JOBZ, RANGE

INTEGER IL, INFO, IU, LDZ, M, N

DOUBLE PRECISION ABSTOL, VL, VU

INTEGER IFAIL( * ), IWORK( * )

DOUBLE PRECISION D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )

PURPOSE

DSTEVX computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

ARGUMENTS

JOBZ (input) CHARACTER*1
= aqNaq: Compute eigenvalues only;
= aqVaq: Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1

= aqAaq: all eigenvalues will be found.
= aqVaq: all eigenvalues in the half-open interval (VL,VU] will be found. = aqIaq: the IL-th through IU-th eigenvalues will be found.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix A. On exit, D may be multiplied by a constant factor chosen to avoid over/underflow in computing the eigenvalues.
E (input/output) DOUBLE PRECISION array, dimension (max(1,N-1))
On entry, the (n-1) subdiagonal elements of the tridiagonal matrix A in elements 1 to N-1 of E. On exit, E may be multiplied by a constant factor chosen to avoid over/underflow in computing the eigenvalues.
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION If RANGE=aqVaq, the lower and upper bounds of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = aqAaq or aqIaq.
IL (input) INTEGER
IU (input) INTEGER If RANGE=aqIaq, the indices (in ascending order) of the smallest and largest eigenvalues to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = aqAaq or aqVaq.
ABSTOL (input) DOUBLE PRECISION
The absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to ABSTOL + EPS * max( |a|,|b| ) , where EPS is the machine precision. If ABSTOL is less than or equal to zero, then EPS*|T| will be used in its place, where |T| is the 1-norm of the tridiagonal matrix. Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow threshold 2*DLAMCH(aqSaq), not zero. If this routine returns with INFO>0, indicating that some eigenvectors did not converge, try setting ABSTOL to 2*DLAMCH(aqSaq). See "Computing Small Singular Values of Bidiagonal Matrices with Guaranteed High Relative Accuracy," by Demmel and Kahan, LAPACK Working Note #3.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N. If RANGE = aqAaq, M = N, and if RANGE = aqIaq, M = IU-IL+1.
W (output) DOUBLE PRECISION array, dimension (N)
The first M elements contain the selected eigenvalues in ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
If JOBZ = aqVaq, then if INFO = 0, the first M columns of Z contain the orthonormal eigenvectors of the matrix A corresponding to the selected eigenvalues, with the i-th column of Z holding the eigenvector associated with W(i). If an eigenvector fails to converge (INFO > 0), then that column of Z contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in IFAIL. If JOBZ = aqNaq, then Z is not referenced. Note: the user must ensure that at least max(1,M) columns are supplied in the array Z; if RANGE = aqVaq, the exact value of M is not known in advance and an upper bound must be used.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if JOBZ = aqVaq, LDZ >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (5*N)
IWORK (workspace) INTEGER array, dimension (5*N)
IFAIL (output) INTEGER array, dimension (N)
If JOBZ = aqVaq, then if INFO = 0, the first M elements of IFAIL are zero. If INFO > 0, then IFAIL contains the indices of the eigenvectors that failed to converge. If JOBZ = aqNaq, then IFAIL is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, then i eigenvectors failed to converge. Their indices are stored in array IFAIL.