sla_gercond (l)  Linux Man Pages
sla_gercond: SLA_GERCOND estimate the Skeel condition number of op(A) * op2(C) where op2 is determined by CMODE as follows CMODE = 1 op2(C) = C CMODE = 0 op2(C) = I CMODE = 1 op2(C) = inv(C) The Skeel condition number cond(A) = norminf( inv(A)A ) is computed by computing scaling factors R such that diag(R)*A*op2(C) is row equilibrated and computing the standard infinitynorm condition number
Command to display sla_gercond
manual in Linux: $ man l sla_gercond
NAME
SLA_GERCOND  SLA_GERCOND estimate the Skeel condition number of op(A) * op2(C) where op2 is determined by CMODE as follows CMODE = 1 op2(C) = C CMODE = 0 op2(C) = I CMODE = 1 op2(C) = inv(C) The Skeel condition number cond(A) = norminf( inv(A)A ) is computed by computing scaling factors R such that diag(R)*A*op2(C) is row equilibrated and computing the standard infinitynorm condition number
SYNOPSIS
 REAL FUNCTION

SLA_GERCOND ( TRANS, N, A, LDA, AF, LDAF, IPIV,
CMODE, C, INFO, WORK, IWORK )

IMPLICIT
NONE

CHARACTER
TRANS

INTEGER
N, LDA, LDAF, INFO, CMODE

INTEGER
IPIV( * ), IWORK( * )

REAL
A( LDA, * ), AF( LDAF, * ), WORK( * ),
C( * )
PURPOSE
SLA_GERCOND estimates the Skeel condition number of op(A)
* op2(C)
where op2 is determined by CMODE as follows
CMODE = 1 op2(C) = C
CMODE = 0 op2(C) = I
CMODE = 1 op2(C) = inv(C)
The Skeel condition number cond(A) = norminf( inv(A)A )
is computed by computing scaling factors R such that
diag(R)*A*op2(C) is row equilibrated and computing the standard
infinitynorm condition number.
ARGUMENTS
 WORK REAL workspace of size 3*N.

 IWORK INTEGER workspace of size N.

Pages related to sla_gercond
 sla_gercond (3)
 sla_gerfsx_extended (l)  computes ..
 sla_geamv (l)  performs one of the matrixvector operations y := alpha*abs(A)*abs(x) + beta*abs(y),
 sla_gbamv (l)  performs one of the matrixvector operations y := alpha*abs(A)*abs(x) + beta*abs(y),
 sla_gbrcond (l)  SLA_GERCOND Estimate the Skeel condition number of op(A) * op2(C) where op2 is determined by CMODE as follows CMODE = 1 op2(C) = C CMODE = 0 op2(C) = I CMODE = 1 op2(C) = inv(C) The Skeel condition number cond(A) = norminf( inv(A)A ) is computed by computing scaling factors R such that diag(R)*A*op2(C) is row equilibrated and computing the standard infinitynorm condition number
 sla_gbrfsx_extended (l)  computes ..
 sla_lin_berr (l)  SLA_LIN_BERR compute componentwise relative backward error from the formula max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) where abs(Z) is the componentwise absolute value of the matrix or vector Z
 sla_porcond (l)  SLA_PORCOND Estimate the Skeel condition number of op(A) * op2(C) where op2 is determined by CMODE as follows CMODE = 1 op2(C) = C CMODE = 0 op2(C) = I CMODE = 1 op2(C) = inv(C) The Skeel condition number cond(A) = norminf( inv(A)A ) is computed by computing scaling factors R such that diag(R)*A*op2(C) is row equilibrated and computing the standard infinitynorm condition number