sla_lin_berr (l)  Linux Manuals
sla_lin_berr: SLA_LIN_BERR compute componentwise relative backward error from the formula max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) where abs(Z) is the componentwise absolute value of the matrix or vector Z
Command to display sla_lin_berr
manual in Linux: $ man l sla_lin_berr
NAME
SLA_LIN_BERR  SLA_LIN_BERR compute componentwise relative backward error from the formula max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) where abs(Z) is the componentwise absolute value of the matrix or vector Z
SYNOPSIS
 SUBROUTINE SLA_LIN_BERR

( N, NZ, NRHS, RES, AYB, BERR )

IMPLICIT
NONE

INTEGER
N, NZ, NRHS

REAL
AYB( N, NRHS ), BERR( NRHS )

REAL
RES( N, NRHS )
PURPOSE
SLA_LIN_BERR computes componentwise relative backward error from
the formula
max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
where abs(Z) is the componentwise absolute value of the matrix
or vector Z.
Pages related to sla_lin_berr
 sla_lin_berr (3)
 sla_gbamv (l)  performs one of the matrixvector operations y := alpha*abs(A)*abs(x) + beta*abs(y),
 sla_gbrcond (l)  SLA_GERCOND Estimate the Skeel condition number of op(A) * op2(C) where op2 is determined by CMODE as follows CMODE = 1 op2(C) = C CMODE = 0 op2(C) = I CMODE = 1 op2(C) = inv(C) The Skeel condition number cond(A) = norminf( inv(A)A ) is computed by computing scaling factors R such that diag(R)*A*op2(C) is row equilibrated and computing the standard infinitynorm condition number
 sla_gbrfsx_extended (l)  computes ..
 sla_geamv (l)  performs one of the matrixvector operations y := alpha*abs(A)*abs(x) + beta*abs(y),
 sla_gercond (l)  SLA_GERCOND estimate the Skeel condition number of op(A) * op2(C) where op2 is determined by CMODE as follows CMODE = 1 op2(C) = C CMODE = 0 op2(C) = I CMODE = 1 op2(C) = inv(C) The Skeel condition number cond(A) = norminf( inv(A)A ) is computed by computing scaling factors R such that diag(R)*A*op2(C) is row equilibrated and computing the standard infinitynorm condition number
 sla_gerfsx_extended (l)  computes ..
 sla_porcond (l)  SLA_PORCOND Estimate the Skeel condition number of op(A) * op2(C) where op2 is determined by CMODE as follows CMODE = 1 op2(C) = C CMODE = 0 op2(C) = I CMODE = 1 op2(C) = inv(C) The Skeel condition number cond(A) = norminf( inv(A)A ) is computed by computing scaling factors R such that diag(R)*A*op2(C) is row equilibrated and computing the standard infinitynorm condition number