slaqr1 (l) - Linux Manuals
Command to display slaqr1
manual in Linux: $ man l slaqr1
NAME
SYNOPSIS
- SUBROUTINE SLAQR1(
-
N, H, LDH, SR1, SI1, SR2, SI2, V )
-
REAL
SI1, SI2, SR1, SR2
-
INTEGER
LDH, N
-
REAL
H( LDH, * ), V( * )
-
REAL
ZERO
-
PARAMETER
( ZERO = 0.0e0 )
-
REAL
H21S, H31S, S
-
INTRINSIC
ABS
-
IF(
N.EQ.2 ) THEN
-
S
= ABS( H( 1, 1 )-SR2 ) + ABS( SI2 ) + ABS( H( 2, 1 ) )
-
IF(
S.EQ.ZERO ) THEN
-
V(
1 ) = ZERO
-
V(
2 ) = ZERO
-
ELSE
-
H21S
= H( 2, 1 ) / S
-
V(
1 ) = H21S*H( 1, 2 ) + ( H( 1, 1 )-SR1 )*
( ( H( 1, 1 )-SR2 ) / S ) - SI1*( SI2 / S )
-
V(
2 ) = H21S*( H( 1, 1 )+H( 2, 2 )-SR1-SR2 )
-
END
IF
-
ELSE
-
S
= ABS( H( 1, 1 )-SR2 ) + ABS( SI2 ) + ABS( H( 2, 1 ) ) +
ABS( H( 3, 1 ) )
-
IF(
S.EQ.ZERO ) THEN
-
V(
1 ) = ZERO
-
V(
2 ) = ZERO
-
V(
3 ) = ZERO
-
ELSE
-
H21S
= H( 2, 1 ) / S
-
H31S
= H( 3, 1 ) / S
-
V(
1 ) = ( H( 1, 1 )-SR1 )*( ( H( 1, 1 )-SR2 ) / S ) -
SI1*( SI2 / S ) + H( 1, 2 )*H21S + H( 1, 3 )*H31S
-
V(
2 ) = H21S*( H( 1, 1 )+H( 2, 2 )-SR1-SR2 ) +
H( 2, 3 )*H31S
-
V(
3 ) = H31S*( H( 1, 1 )+H( 3, 3 )-SR1-SR2 ) +
H21S*H( 3, 2 )
-
END
IF
-
END
IF
-
END
PURPOSE
Pages related to slaqr1
- slaqr1 (3)
- slaqr0 (l) - SLAQR0 compute the eigenvalues of a Hessenberg matrix H and, optionally, the matrices T and Z from the Schur decomposition H = Z T Z**T, where T is an upper quasi-triangular matrix (the Schur form), and Z is the orthogonal matrix of Schur vectors
- slaqr2 (l)
- slaqr3 (l)
- slaqr4 (l) - SLAQR4 compute the eigenvalues of a Hessenberg matrix H and, optionally, the matrices T and Z from the Schur decomposition H = Z T Z**T, where T is an upper quasi-triangular matrix (the Schur form), and Z is the orthogonal matrix of Schur vectors
- slaqr5 (l)
- slaqgb (l) - equilibrates a general M by N band matrix A with KL subdiagonals and KU superdiagonals using the row and scaling factors in the vectors R and C
- slaqge (l) - equilibrates a general M by N matrix A using the row and column scaling factors in the vectors R and C
- slaqp2 (l) - computes a QR factorization with column pivoting of the block A(OFFSET+1:M,1:N)
- slaqps (l) - computes a step of QR factorization with column pivoting of a real M-by-N matrix A by using Blas-3