slasda (l)  Linux Manuals
slasda: a divide and conquer approach, SLASDA computes the singular value decomposition (SVD) of a real upper bidiagonal NbyM matrix B with diagonal D and offdiagonal E, where M = N + SQRE
NAME
SLASDA  a divide and conquer approach, SLASDA computes the singular value decomposition (SVD) of a real upper bidiagonal NbyM matrix B with diagonal D and offdiagonal E, where M = N + SQRESYNOPSIS
 SUBROUTINE SLASDA(
 ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL, PERM, GIVNUM, C, S, WORK, IWORK, INFO )
 INTEGER ICOMPQ, INFO, LDGCOL, LDU, N, SMLSIZ, SQRE
 INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ), K( * ), PERM( LDGCOL, * )
 REAL C( * ), D( * ), DIFL( LDU, * ), DIFR( LDU, * ), E( * ), GIVNUM( LDU, * ), POLES( LDU, * ), S( * ), U( LDU, * ), VT( LDU, * ), WORK( * ), Z( LDU, * )
PURPOSE
Using a divide and conquer approach, SLASDA computes the singular value decomposition (SVD) of a real upper bidiagonal NbyM matrix B with diagonal D and offdiagonal E, where M = N + SQRE. The algorithm computes the singular values in the SVD B = U * S * VT. The orthogonal matrices U and VT are optionally computed in compact form.A related subroutine, SLASD0, computes the singular values and the singular vectors in explicit form.
ARGUMENTS
ICOMPQ (input) INTEGER Specifies whether singular vectors are to be computed in compact form, as follows = 0: Compute singular values only.= 1: Compute singular vectors of upper bidiagonal matrix in compact form. SMLSIZ (input) INTEGER The maximum size of the subproblems at the bottom of the computation tree.
 N (input) INTEGER
 The row dimension of the upper bidiagonal matrix. This is also the dimension of the main diagonal array D.
 SQRE (input) INTEGER

Specifies the column dimension of the bidiagonal matrix.
= 0: The bidiagonal matrix has column dimension M = N;
= 1: The bidiagonal matrix has column dimension M = N + 1.  D (input/output) REAL array, dimension ( N )
 On entry D contains the main diagonal of the bidiagonal matrix. On exit D, if INFO = 0, contains its singular values.
 E (input) REAL array, dimension ( M1 )
 Contains the subdiagonal entries of the bidiagonal matrix. On exit, E has been destroyed.
 U (output) REAL array,
 dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left singular vector matrices of all subproblems at the bottom level.
 LDU (input) INTEGER, LDU = > N.
 The leading dimension of arrays U, VT, DIFL, DIFR, POLES, GIVNUM, and Z.
 VT (output) REAL array,
 dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, VTaq contains the right singular vector matrices of all subproblems at the bottom level.
 K (output) INTEGER array, dimension ( N )
 if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1, on exit, K(I) is the dimension of the Ith secular equation on the computation tree.
 DIFL (output) REAL array, dimension ( LDU, NLVL ),
 where NLVL = floor(log_2 (N/SMLSIZ))).
 DIFR (output) REAL array,
 dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and dimension ( N ) if ICOMPQ = 0. If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I  1) record distances between singular values on the Ith level and singular values on the (I 1)th level, and DIFR(1:N, 2 * I ) contains the normalizing factors for the right singular vector matrix. See SLASD8 for details.
 Z (output) REAL array,
 dimension ( LDU, NLVL ) if ICOMPQ = 1 and dimension ( N ) if ICOMPQ = 0. The first K elements of Z(1, I) contain the components of the deflationadjusted updating row vector for subproblems on the Ith level.
 POLES (output) REAL array,
 dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I  1) and POLES(1, 2*I) contain the new and old singular values involved in the secular equations on the Ith level. GIVPTR (output) INTEGER array, dimension ( N ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records the number of Givens rotations performed on the Ith problem on the computation tree. GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, GIVCOL(1, 2 *I  1) and GIVCOL(1, 2 *I) record the locations of Givens rotations performed on the Ith level on the computation tree. LDGCOL (input) INTEGER, LDGCOL = > N. The leading dimension of arrays GIVCOL and PERM.
 PERM (output) INTEGER array, dimension ( LDGCOL, NLVL )
 if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records permutations done on the Ith level of the computation tree. GIVNUM (output) REAL array, dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, GIVNUM(1, 2 *I  1) and GIVNUM(1, 2 *I) record the C and S values of Givens rotations performed on the Ith level on the computation tree.
 C (output) REAL array,
 dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1 and the Ith subproblem is not square, on exit, C( I ) contains the Cvalue of a Givens rotation related to the right null space of the Ith subproblem.
 S (output) REAL array, dimension ( N ) if
 ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1 and the Ith subproblem is not square, on exit, S( I ) contains the Svalue of a Givens rotation related to the right null space of the Ith subproblem.
 WORK (workspace) REAL array, dimension
 (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)).
 IWORK (workspace) INTEGER array, dimension (7*N).
 INFO (output) INTEGER

= 0: successful exit.
< 0: if INFO = i, the ith argument had an illegal value.
> 0: if INFO = 1, an singular value did not converge
FURTHER DETAILS
Based on contributions byMing Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA