slasq3 (l) - Linux Manuals
slasq3: checks for deflation, computes a shift (TAU) and calls dqds
Command to display slasq3
manual in Linux: $ man l slasq3
NAME
SLASQ3 - checks for deflation, computes a shift (TAU) and calls dqds
SYNOPSIS
- SUBROUTINE SLASQ3(
-
I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1,
DN2, G, TAU )
-
LOGICAL
IEEE
-
INTEGER
I0, ITER, N0, NDIV, NFAIL, PP
-
REAL
DESIG, DMIN, DMIN1, DMIN2, DN, DN1, DN2, G,
QMAX, SIGMA, TAU
-
REAL
Z( * )
PURPOSE
SLASQ3 checks for deflation, computes a shift (TAU) and calls dqds.
In case of failure it changes shifts, and tries again until output
is positive.
ARGUMENTS
- I0 (input) INTEGER
-
First index.
- N0 (input) INTEGER
-
Last index.
- Z (input) REAL array, dimension ( 4*N )
-
Z holds the qd array.
- PP (input/output) INTEGER
-
PP=0 for ping, PP=1 for pong.
PP=2 indicates that flipping was applied to the Z array
and that the initial tests for deflation should not be
performed.
- DMIN (output) REAL
-
Minimum value of d.
- SIGMA (output) REAL
-
Sum of shifts used in current segment.
- DESIG (input/output) REAL
-
Lower order part of SIGMA
- QMAX (input) REAL
-
Maximum value of q.
- NFAIL (output) INTEGER
-
Number of times shift was too big.
- ITER (output) INTEGER
-
Number of iterations.
- NDIV (output) INTEGER
-
Number of divisions.
- IEEE (input) LOGICAL
-
Flag for IEEE or non IEEE arithmetic (passed to SLASQ5).
- TTYPE (input/output) INTEGER
-
Shift type.
DMIN1, DMIN2, DN, DN1, DN2, G, TAU (input/output) REAL
These are passed as arguments in order to save their values
between calls to SLASQ3.
Pages related to slasq3
- slasq3 (3)
- slasq1 (l) - computes the singular values of a real N-by-N bidiagonal matrix with diagonal D and off-diagonal E
- slasq2 (l) - computes all the eigenvalues of the symmetric positive definite tridiagonal matrix associated with the qd array Z to high relative accuracy are computed to high relative accuracy, in the absence of denormalization, underflow and overflow
- slasq4 (l) - computes an approximation TAU to the smallest eigenvalue using values of d from the previous transform
- slasq5 (l) - computes one dqds transform in ping-pong form, one version for IEEE machines another for non IEEE machines
- slasq6 (l) - computes one dqd (shift equal to zero) transform in ping-pong form, with protection against underflow and overflow
- slas2 (l) - computes the singular values of the 2-by-2 matrix [ F G ] [ 0 H ]
- slascl (l) - multiplies the M by N real matrix A by the real scalar CTO/CFROM
- slascl2 (l) - performs a diagonal scaling on a vector
- slasd0 (l) - a divide and conquer approach, SLASD0 computes the singular value decomposition (SVD) of a real upper bidiagonal N-by-M matrix B with diagonal D and offdiagonal E, where M = N + SQRE