sptts2 (l) - Linux Manuals
sptts2: solves a tridiagonal system of the form A * X = B using the L*D*Laq factorization of A computed by SPTTRF
NAME
SPTTS2 - solves a tridiagonal system of the form A * X = B using the L*D*Laq factorization of A computed by SPTTRFSYNOPSIS
- SUBROUTINE SPTTS2(
- N, NRHS, D, E, B, LDB )
- INTEGER LDB, N, NRHS
- REAL B( LDB, * ), D( * ), E( * )
PURPOSE
SPTTS2 solves a tridiagonal system of the formA
ARGUMENTS
- N (input) INTEGER
- The order of the tridiagonal matrix A. N >= 0.
- NRHS (input) INTEGER
- The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
- D (input) REAL array, dimension (N)
- The n diagonal elements of the diagonal matrix D from the L*D*Laq factorization of A.
- E (input) REAL array, dimension (N-1)
- The (n-1) subdiagonal elements of the unit bidiagonal factor L from the L*D*Laq factorization of A. E can also be regarded as the superdiagonal of the unit bidiagonal factor U from the factorization A = Uaq*D*U.
- B (input/output) REAL array, dimension (LDB,NRHS)
- On entry, the right hand side vectors B for the system of linear equations. On exit, the solution vectors, X.
- LDB (input) INTEGER
-
The leading dimension of the array B. LDB >= max(1,N).