zsteqr (l) - Linux Manuals

zsteqr: computes all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the implicit QL or QR method

NAME

ZSTEQR - computes all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the implicit QL or QR method

SYNOPSIS

SUBROUTINE ZSTEQR(
COMPZ, N, D, E, Z, LDZ, WORK, INFO )

    
CHARACTER COMPZ

    
INTEGER INFO, LDZ, N

    
DOUBLE PRECISION D( * ), E( * ), WORK( * )

    
COMPLEX*16 Z( LDZ, * )

PURPOSE

ZSTEQR computes all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the implicit QL or QR method. The eigenvectors of a full or band complex Hermitian matrix can also be found if ZHETRD or ZHPTRD or ZHBTRD has been used to reduce this matrix to tridiagonal form.

ARGUMENTS

COMPZ (input) CHARACTER*1
= aqNaq: Compute eigenvalues only.
= aqVaq: Compute eigenvalues and eigenvectors of the original Hermitian matrix. On entry, Z must contain the unitary matrix used to reduce the original matrix to tridiagonal form. = aqIaq: Compute eigenvalues and eigenvectors of the tridiagonal matrix. Z is initialized to the identity matrix.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the diagonal elements of the tridiagonal matrix. On exit, if INFO = 0, the eigenvalues in ascending order.
E (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal matrix. On exit, E has been destroyed.
Z (input/output) COMPLEX*16 array, dimension (LDZ, N)
On entry, if COMPZ = aqVaq, then Z contains the unitary matrix used in the reduction to tridiagonal form. On exit, if INFO = 0, then if COMPZ = aqVaq, Z contains the orthonormal eigenvectors of the original Hermitian matrix, and if COMPZ = aqIaq, Z contains the orthonormal eigenvectors of the symmetric tridiagonal matrix. If COMPZ = aqNaq, then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if eigenvectors are desired, then LDZ >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2))
If COMPZ = aqNaq, then WORK is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: the algorithm has failed to find all the eigenvalues in a total of 30*N iterations; if INFO = i, then i elements of E have not converged to zero; on exit, D and E contain the elements of a symmetric tridiagonal matrix which is unitarily similar to the original matrix.