ztftri (l) - Linux Manuals

ztftri: computes the inverse of a triangular matrix A stored in RFP format

NAME

ZTFTRI - computes the inverse of a triangular matrix A stored in RFP format

SYNOPSIS

SUBROUTINE ZTFTRI(
TRANSR, UPLO, DIAG, N, A, INFO )

    
CHARACTER TRANSR, UPLO, DIAG

    
INTEGER INFO, N

    
COMPLEX*16 A( 0: * )

PURPOSE

ZTFTRI computes the inverse of a triangular matrix A stored in RFP format. This is a Level 3 BLAS version of the algorithm.

ARGUMENTS

TRANSR (input) CHARACTER
= aqNaq: The Normal TRANSR of RFP A is stored;
= aqCaq: The Conjugate-transpose TRANSR of RFP A is stored.
UPLO (input) CHARACTER

= aqUaq: A is upper triangular;
= aqLaq: A is lower triangular.
DIAG (input) CHARACTER

= aqNaq: A is non-unit triangular;
= aqUaq: A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) COMPLEX*16 array, dimension ( N*(N+1)/2 );
On entry, the triangular matrix A in RFP format. RFP format is described by TRANSR, UPLO, and N as follows: If TRANSR =
aqNaq then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
(0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = aqCaq then RFP is the Conjugate-transpose of RFP A as defined when TRANSR = aqNaq. The contents of RFP A are defined by UPLO as follows: If UPLO = aqUaq the RFP A contains the nt elements of upper packed A; If UPLO = aqLaq the RFP A contains the nt elements of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR = aqCaq. When TRANSR is aqNaq the LDA is N+1 when N is even and N is odd. See the Note below for more details. On exit, the (triangular) inverse of the original matrix, in the same storage format.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, A(i,i) is exactly zero. The triangular matrix is singular and its inverse can not be computed.

FURTHER DETAILS

We first consider Standard Packed Format when N is even.
We give an example where N = 6.

 AP is Upper             AP is Lower

 00 01 02 03 04 05       00

 11 12 13 14 15       10 11

 22 23 24 25       20 21 22

    33 34 35       30 31 32 33

       44 45       40 41 42 43 44

          55       50 51 52 53 54 55
Let TRANSR = aqNaq. RFP holds AP as follows:
For UPLO = aqUaq the upper trapezoid A(0:5,0:2) consists of the last three columns of AP upper. The lower triangle A(4:6,0:2) consists of conjugate-transpose of the first three columns of AP upper. For UPLO = aqLaq the lower trapezoid A(1:6,0:2) consists of the first three columns of AP lower. The upper triangle A(0:2,0:2) consists of conjugate-transpose of the last three columns of AP lower. To denote conjugate we place -- above the element. This covers the case N even and TRANSR = aqNaq.

 RFP A                   RFP A

                        -- -- --

03 04 05                33 43 53

                           -- --

13 14 15                00 44 54

                              --

23 24 25                10 11 55

33 34 35                20 21 22

--

00 44 45                30 31 32

-- --

01 11 55                40 41 42

-- -- --

02 12 22                50 51 52
Now let TRANSR = aqCaq. RFP A in both UPLO cases is just the conjugate- transpose of RFP A above. One therefore gets:

   RFP A                   RFP A

-- -- -- --                -- -- -- -- -- --

03 13 23 33 00 01 02    33 00 10 20 30 40 50

-- -- -- -- --                -- -- -- -- --

04 14 24 34 44 11 12    43 44 11 21 31 41 51

-- -- -- -- -- --                -- -- -- --

05 15 25 35 45 55 22    53 54 55 22 32 42 52
We next consider Standard Packed Format when N is odd.
We give an example where N = 5.

AP is Upper                 AP is Lower

 00 01 02 03 04              00

 11 12 13 14              10 11

 22 23 24              20 21 22

    33 34              30 31 32 33

       44              40 41 42 43 44
Let TRANSR = aqNaq. RFP holds AP as follows:
For UPLO = aqUaq the upper trapezoid A(0:4,0:2) consists of the last three columns of AP upper. The lower triangle A(3:4,0:1) consists of conjugate-transpose of the first two columns of AP upper. For UPLO = aqLaq the lower trapezoid A(0:4,0:2) consists of the first three columns of AP lower. The upper triangle A(0:1,1:2) consists of conjugate-transpose of the last two columns of AP lower. To denote conjugate we place -- above the element. This covers the case N odd and TRANSR = aqNaq.

 RFP A                   RFP A

                           -- --

02 03 04                00 33 43

                              --

12 13 14                10 11 44

22 23 24                20 21 22

--

00 33 34                30 31 32

-- --

01 11 44                40 41 42
Now let TRANSR = aqCaq. RFP A in both UPLO cases is just the conjugate- transpose of RFP A above. One therefore gets:

   RFP A                   RFP A

-- -- --                   -- -- -- -- -- --

02 12 22 00 01             00 10 20 30 40 50

-- -- -- --                   -- -- -- -- --

03 13 23 33 11             33 11 21 31 41 51

-- -- -- -- --                   -- -- -- --

04 14 24 34 44             43 44 22 32 42 52