ztrsna (l) - Linux Manuals
ztrsna: estimates reciprocal condition numbers for specified eigenvalues and/or right eigenvectors of a complex upper triangular matrix T (or of any matrix Q*T*Q**H with Q unitary)
NAME
ZTRSNA - estimates reciprocal condition numbers for specified eigenvalues and/or right eigenvectors of a complex upper triangular matrix T (or of any matrix Q*T*Q**H with Q unitary)SYNOPSIS
- SUBROUTINE ZTRSNA(
- JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, LDVR, S, SEP, MM, M, WORK, LDWORK, RWORK, INFO )
- CHARACTER HOWMNY, JOB
- INTEGER INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
- LOGICAL SELECT( * )
- DOUBLE PRECISION RWORK( * ), S( * ), SEP( * )
- COMPLEX*16 T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ), WORK( LDWORK, * )
PURPOSE
ZTRSNA estimates reciprocal condition numbers for specified eigenvalues and/or right eigenvectors of a complex upper triangular matrix T (or of any matrix Q*T*Q**H with Q unitary).ARGUMENTS
- JOB (input) CHARACTER*1
-
Specifies whether condition numbers are required for
eigenvalues (S) or eigenvectors (SEP):
= aqEaq: for eigenvalues only (S);
= aqVaq: for eigenvectors only (SEP);
= aqBaq: for both eigenvalues and eigenvectors (S and SEP). - HOWMNY (input) CHARACTER*1
-
= aqAaq: compute condition numbers for all eigenpairs;
= aqSaq: compute condition numbers for selected eigenpairs specified by the array SELECT. - SELECT (input) LOGICAL array, dimension (N)
- If HOWMNY = aqSaq, SELECT specifies the eigenpairs for which condition numbers are required. To select condition numbers for the j-th eigenpair, SELECT(j) must be set to .TRUE.. If HOWMNY = aqAaq, SELECT is not referenced.
- N (input) INTEGER
- The order of the matrix T. N >= 0.
- T (input) COMPLEX*16 array, dimension (LDT,N)
- The upper triangular matrix T.
- LDT (input) INTEGER
- The leading dimension of the array T. LDT >= max(1,N).
- VL (input) COMPLEX*16 array, dimension (LDVL,M)
- If JOB = aqEaq or aqBaq, VL must contain left eigenvectors of T (or of any Q*T*Q**H with Q unitary), corresponding to the eigenpairs specified by HOWMNY and SELECT. The eigenvectors must be stored in consecutive columns of VL, as returned by ZHSEIN or ZTREVC. If JOB = aqVaq, VL is not referenced.
- LDVL (input) INTEGER
- The leading dimension of the array VL. LDVL >= 1; and if JOB = aqEaq or aqBaq, LDVL >= N.
- VR (input) COMPLEX*16 array, dimension (LDVR,M)
- If JOB = aqEaq or aqBaq, VR must contain right eigenvectors of T (or of any Q*T*Q**H with Q unitary), corresponding to the eigenpairs specified by HOWMNY and SELECT. The eigenvectors must be stored in consecutive columns of VR, as returned by ZHSEIN or ZTREVC. If JOB = aqVaq, VR is not referenced.
- LDVR (input) INTEGER
- The leading dimension of the array VR. LDVR >= 1; and if JOB = aqEaq or aqBaq, LDVR >= N.
- S (output) DOUBLE PRECISION array, dimension (MM)
- If JOB = aqEaq or aqBaq, the reciprocal condition numbers of the selected eigenvalues, stored in consecutive elements of the array. Thus S(j), SEP(j), and the j-th columns of VL and VR all correspond to the same eigenpair (but not in general the j-th eigenpair, unless all eigenpairs are selected). If JOB = aqVaq, S is not referenced.
- SEP (output) DOUBLE PRECISION array, dimension (MM)
- If JOB = aqVaq or aqBaq, the estimated reciprocal condition numbers of the selected eigenvectors, stored in consecutive elements of the array. If JOB = aqEaq, SEP is not referenced.
- MM (input) INTEGER
- The number of elements in the arrays S (if JOB = aqEaq or aqBaq) and/or SEP (if JOB = aqVaq or aqBaq). MM >= M.
- M (output) INTEGER
- The number of elements of the arrays S and/or SEP actually used to store the estimated condition numbers. If HOWMNY = aqAaq, M is set to N.
- WORK (workspace) COMPLEX*16 array, dimension (LDWORK,N+6)
- If JOB = aqEaq, WORK is not referenced.
- LDWORK (input) INTEGER
- The leading dimension of the array WORK. LDWORK >= 1; and if JOB = aqVaq or aqBaq, LDWORK >= N.
- RWORK (workspace) DOUBLE PRECISION array, dimension (N)
- If JOB = aqEaq, RWORK is not referenced.
- INFO (output) INTEGER
-
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
FURTHER DETAILS
The reciprocal of the condition number of an eigenvalue lambda is defined aswhere u and v are the right and left eigenvectors of T corresponding to lambda; vaq denotes the conjugate transpose of v, and norm(u) denotes the Euclidean norm. These reciprocal condition numbers always lie between zero (very badly conditioned) and one (very well conditioned). If n = 1, S(lambda) is defined to be 1.
An approximate error bound for a computed eigenvalue W(i) is given by
where EPS is the machine precision.
The reciprocal of the condition number of the right eigenvector u corresponding to lambda is defined as follows. Suppose
Then the reciprocal condition number is
where sigma-min denotes the smallest singular value. We approximate the smallest singular value by the reciprocal of an estimate of the one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is defined to be abs(T(1,1)).
An approximate error bound for a computed right eigenvector VR(i) is given by