ztrtrs (l) - Linux Manuals
ztrtrs: solves a triangular system of the form A * X = B, A**T * X = B, or A**H * X = B,
Command to display ztrtrs
manual in Linux: $ man l ztrtrs
NAME
ZTRTRS - solves a triangular system of the form A * X = B, A**T * X = B, or A**H * X = B,
SYNOPSIS
- SUBROUTINE ZTRTRS(
-
UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB,
INFO )
-
CHARACTER
DIAG, TRANS, UPLO
-
INTEGER
INFO, LDA, LDB, N, NRHS
-
COMPLEX*16
A( LDA, * ), B( LDB, * )
PURPOSE
ZTRTRS solves a triangular system of the form
where A is a triangular matrix of order N, and B is an N-by-NRHS
matrix. A check is made to verify that A is nonsingular.
ARGUMENTS
- UPLO (input) CHARACTER*1
-
= aqUaq: A is upper triangular;
= aqLaq: A is lower triangular.
- TRANS (input) CHARACTER*1
-
Specifies the form of the system of equations:
= aqNaq: A * X = B (No transpose)
= aqTaq: A**T * X = B (Transpose)
= aqCaq: A**H * X = B (Conjugate transpose)
- DIAG (input) CHARACTER*1
-
= aqNaq: A is non-unit triangular;
= aqUaq: A is unit triangular.
- N (input) INTEGER
-
The order of the matrix A. N >= 0.
- NRHS (input) INTEGER
-
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
- A (input) COMPLEX*16 array, dimension (LDA,N)
-
The triangular matrix A. If UPLO = aqUaq, the leading N-by-N
upper triangular part of the array A contains the upper
triangular matrix, and the strictly lower triangular part of
A is not referenced. If UPLO = aqLaq, the leading N-by-N lower
triangular part of the array A contains the lower triangular
matrix, and the strictly upper triangular part of A is not
referenced. If DIAG = aqUaq, the diagonal elements of A are
also not referenced and are assumed to be 1.
- LDA (input) INTEGER
-
The leading dimension of the array A. LDA >= max(1,N).
- B (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
-
On entry, the right hand side matrix B.
On exit, if INFO = 0, the solution matrix X.
- LDB (input) INTEGER
-
The leading dimension of the array B. LDB >= max(1,N).
- INFO (output) INTEGER
-
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element of A is zero,
indicating that the matrix is singular and the solutions
X have not been computed.
Pages related to ztrtrs
- ztrtrs (3)
- ztrtri (l) - computes the inverse of a complex upper or lower triangular matrix A
- ztrti2 (l) - computes the inverse of a complex upper or lower triangular matrix
- ztrttf (l) - copies a triangular matrix A from standard full format (TR) to rectangular full packed format (TF)
- ztrttp (l) - copies a triangular matrix A from full format (TR) to standard packed format (TP)
- ztrcon (l) - estimates the reciprocal of the condition number of a triangular matrix A, in either the 1-norm or the infinity-norm
- ztrevc (l) - computes some or all of the right and/or left eigenvectors of a complex upper triangular matrix T
- ztrexc (l) - reorders the Schur factorization of a complex matrix A = Q*T*Q**H, so that the diagonal element of T with row index IFST is moved to row ILST