ztrrfs (3) - Linux Manuals

NAME

ztrrfs.f -

SYNOPSIS


Functions/Subroutines


subroutine ztrrfs (UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)
ZTRRFS

Function/Subroutine Documentation

subroutine ztrrfs (characterUPLO, characterTRANS, characterDIAG, integerN, integerNRHS, complex*16, dimension( lda, * )A, integerLDA, complex*16, dimension( ldb, * )B, integerLDB, complex*16, dimension( ldx, * )X, integerLDX, double precision, dimension( * )FERR, double precision, dimension( * )BERR, complex*16, dimension( * )WORK, double precision, dimension( * )RWORK, integerINFO)

ZTRRFS

Purpose:

 ZTRRFS provides error bounds and backward error estimates for the
 solution to a system of linear equations with a triangular
 coefficient matrix.

 The solution matrix X must be computed by ZTRTRS or some other
 means before entering this routine.  ZTRRFS does not do iterative
 refinement because doing so cannot improve the backward error.


 

Parameters:

UPLO

          UPLO is CHARACTER*1
          = 'U':  A is upper triangular;
          = 'L':  A is lower triangular.


TRANS

          TRANS is CHARACTER*1
          Specifies the form of the system of equations:
          = 'N':  A * X = B     (No transpose)
          = 'T':  A**T * X = B  (Transpose)
          = 'C':  A**H * X = B  (Conjugate transpose)


DIAG

          DIAG is CHARACTER*1
          = 'N':  A is non-unit triangular;
          = 'U':  A is unit triangular.


N

          N is INTEGER
          The order of the matrix A.  N >= 0.


NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrices B and X.  NRHS >= 0.


A

          A is COMPLEX*16 array, dimension (LDA,N)
          The triangular matrix A.  If UPLO = 'U', the leading N-by-N
          upper triangular part of the array A contains the upper
          triangular matrix, and the strictly lower triangular part of
          A is not referenced.  If UPLO = 'L', the leading N-by-N lower
          triangular part of the array A contains the lower triangular
          matrix, and the strictly upper triangular part of A is not
          referenced.  If DIAG = 'U', the diagonal elements of A are
          also not referenced and are assumed to be 1.


LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).


B

          B is COMPLEX*16 array, dimension (LDB,NRHS)
          The right hand side matrix B.


LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).


X

          X is COMPLEX*16 array, dimension (LDX,NRHS)
          The solution matrix X.


LDX

          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).


FERR

          FERR is DOUBLE PRECISION array, dimension (NRHS)
          The estimated forward error bound for each solution vector
          X(j) (the j-th column of the solution matrix X).
          If XTRUE is the true solution corresponding to X(j), FERR(j)
          is an estimated upper bound for the magnitude of the largest
          element in (X(j) - XTRUE) divided by the magnitude of the
          largest element in X(j).  The estimate is as reliable as
          the estimate for RCOND, and is almost always a slight
          overestimate of the true error.


BERR

          BERR is DOUBLE PRECISION array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector X(j) (i.e., the smallest relative change in
          any element of A or B that makes X(j) an exact solution).


WORK

          WORK is COMPLEX*16 array, dimension (2*N)


RWORK

          RWORK is DOUBLE PRECISION array, dimension (N)


INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value


 

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

November 2011

Definition at line 182 of file ztrrfs.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.