ztrrfs (3)  Linux Man Pages
NAME
ztrrfs.f 
SYNOPSIS
Functions/Subroutines
subroutine ztrrfs (UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)
ZTRRFS
Function/Subroutine Documentation
subroutine ztrrfs (characterUPLO, characterTRANS, characterDIAG, integerN, integerNRHS, complex*16, dimension( lda, * )A, integerLDA, complex*16, dimension( ldb, * )B, integerLDB, complex*16, dimension( ldx, * )X, integerLDX, double precision, dimension( * )FERR, double precision, dimension( * )BERR, complex*16, dimension( * )WORK, double precision, dimension( * )RWORK, integerINFO)
ZTRRFS
Purpose:

ZTRRFS provides error bounds and backward error estimates for the solution to a system of linear equations with a triangular coefficient matrix. The solution matrix X must be computed by ZTRTRS or some other means before entering this routine. ZTRRFS does not do iterative refinement because doing so cannot improve the backward error.
Parameters:

UPLO
UPLO is CHARACTER*1 = 'U': A is upper triangular; = 'L': A is lower triangular.
TRANSTRANS is CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose)
DIAGDIAG is CHARACTER*1 = 'N': A is nonunit triangular; = 'U': A is unit triangular.
NN is INTEGER The order of the matrix A. N >= 0.
NRHSNRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0.
AA is COMPLEX*16 array, dimension (LDA,N) The triangular matrix A. If UPLO = 'U', the leading NbyN upper triangular part of the array A contains the upper triangular matrix, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading NbyN lower triangular part of the array A contains the lower triangular matrix, and the strictly upper triangular part of A is not referenced. If DIAG = 'U', the diagonal elements of A are also not referenced and are assumed to be 1.
LDALDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
BB is COMPLEX*16 array, dimension (LDB,NRHS) The right hand side matrix B.
LDBLDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
XX is COMPLEX*16 array, dimension (LDX,NRHS) The solution matrix X.
LDXLDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).
FERRFERR is DOUBLE PRECISION array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the jth column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j)  XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error.
BERRBERR is DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution).
WORKWORK is COMPLEX*16 array, dimension (2*N)
RWORKRWORK is DOUBLE PRECISION array, dimension (N)
INFOINFO is INTEGER = 0: successful exit < 0: if INFO = i, the ith argument had an illegal value
Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
 November 2011
Definition at line 182 of file ztrrfs.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.